Rev Bras Cir Cardiovasc
December 2012
Objectives: The present investigation aimed to study the protective effect of intermittent normothermic cardioplegia in rabbit's hypertrophic hearts.
Methods: The parameters chosen were 1) the ratio heart weight / body weight, 2) the myocardial glycogen levels, 3) ultrastructural changes of light and electron microscopy, and 4) mitochondrial respiration.
Results: 1) The experimental model, coarctation of the aorta induced left ventricular hypertrophy; 2) the temporal evolution of the glycogen levels in hypertrophic myocardium demonstrates that there is a significant decrease; 3) It was observed a time-dependent trend of higher oxygen consumption values in the hypertrophic group; 4) there was a significant time-dependent decrease in the respiratory coefficient rate in the hypertrophic group; 5) the stoichiometries values of the ADP: O2 revealed the downward trend of the values of the hypertrophic group; 6) It was possible to observe damaged mitochondria from hypertrophic myocardium emphasizing the large heterogeneity of data.
Although the conversion of lactate to glycogen (glyconeogenesis) in muscle was demonstrated a long time ago, the biochemical reactions responsible for this process are still a controversial matter. In the present study, advantage was taken from the specific inhibition induced by phenylalanine on muscle pyruvate kinase (PK) to investigate the role of reverse PK activity in muscle glyconeogenesis. Addition of phenylalanine to the incubation medium of a preparation of isolated, intact skeletal muscles that maintain metabolic activity for several hours reduced by 50% the rate of incorporation of [14C]lactate or [14C]bicarbonate into muscle glycogen.
View Article and Find Full Text PDF