Publications by authors named "Jose E Ruiz-Sainz"

Conventional systems used to tag and transfer symbiotic plasmids (pSyms) of rhizobial strains are based in mutagenesis with transposons. In those processes, numerous clones must be analyzed to find one of them with the transposon inserted in the pSym. Following this strategy, the insertion might interrupt a gene that can affect the symbiotic phenotype of the bacteria tagged.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 Rif , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 Rif nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu.

View Article and Find Full Text PDF

Members of contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In and , mutations in do not impair symbiotic nitrogen fixation.

View Article and Find Full Text PDF

indigenous populations are prevalent in provinces of Central China whereas species (, , , and others) are more abundant in northern and southern provinces. The symbiotic properties of different soybean rhizobia have been investigated with 40 different wild soybean () accessions from China, Japan, Russia, and South Korea. Bradyrhizobial strains nodulated all the wild soybeans tested, albeit efficiency of nitrogen fixation varied considerably among accessions.

View Article and Find Full Text PDF

Plants use long-distance signaling mechanisms to coordinate their growth and control their interactions, positive or negative, with microbes. Split-root systems (SRS) have been used to study the relevance of both local and systemic plant mechanisms that participate in the control of rhizobia-legume symbioses. In this work we have developed a modification of the standard split-root system (SRS) used with soybean.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103-Rif, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 is a rhizobial strain showing a broad host range of nodulation. In addition to the induction of bacterial nodulation genes, transition from a free-living to a symbiotic state requires complex genetic expression changes with the participation of global regulators. We have analyzed the role of the zinc-finger transcriptional regulator MucR1 from S.

View Article and Find Full Text PDF

Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S.

View Article and Find Full Text PDF

In rhizobial species that nodulate inverted repeat-lacking clade (IRLC) legumes, such as the interaction between Sinorhizobium meliloti and Medicago, bacteroid differentiation is driven by an endoreduplication event that is induced by host nodule-specific cysteine rich (NCR) antimicrobial peptides and requires the participation of the bacterial protein BacA. We have studied bacteroid differentiation of Sinorhizobium fredii HH103 in three host plants: Glycine max, Cajanus cajan and the IRLC legume Glycyrrhiza uralensis. Flow cytometry, microscopy analyses and viability studies of bacteroids as well as confocal microscopy studies carried out in nodules showed that S.

View Article and Find Full Text PDF

Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy.

View Article and Find Full Text PDF

In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021.

View Article and Find Full Text PDF

Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L.

View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S.

View Article and Find Full Text PDF
Article Synopsis
  • Sinorhizobium fredii HH103 is a quickly growing rhizobial strain that can nodulate both determinate and indeterminate legumes, such as soybeans.
  • The genome of HH103 is comprised of one chromosome and five plasmids.
  • The total size of the HH103 genome is 7.22 megabases (Mb).
View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants.

View Article and Find Full Text PDF

Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii.

View Article and Find Full Text PDF

In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S.

View Article and Find Full Text PDF

Megaplasmid pSymB of the nitrogen-fixing symbiont Sinorhizobium meliloti, implicated in adaptation to hyperosmotic stress, contains 11 gene clusters that apparently encode surface polysaccharides. However, only 2 of these clusters, containing the exo and exp genes, have been associated with the synthesis of the acidic exopolysaccharides succinoglycan and galactoglucan, respectively. The functions of the other 9 clusters remain unsolved.

View Article and Find Full Text PDF

Despite the importance of mutualism as a key ecological process, its persistence in nature is difficult to explain since the existence of exploitative, "cheating" partners that could erode the interaction is common. By analogy with the proposed policing strategy stabilizing intraspecific cooperation, host sanctions against non-N(2) fixing, cheating symbionts have been proposed as a force stabilizing mutualism in legume-Rhizobium symbiosis. Following this proposal, penalizations would include decreased nodular rhizobial viability and/or early nodule senescence in nodules occupied by cheating rhizobia.

View Article and Find Full Text PDF

Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette.

View Article and Find Full Text PDF

Transposon Tn5-Mob mutagenesis allowed the selection of a Sinorhizobium fredii HH103 mutant derivative (SVQ 292) that requires the presence of uracil to grow in minimal media. The mutated gene, pyrF, codes for an orotidine-5 - monophosphate decarboxylase (EC 4.1.

View Article and Find Full Text PDF

Attachment of soil bacteria to plant cells is supposedly the very early step required in plant-microbe interactions. Attachment also is an initial step for the formation of microbial biofilms on plant roots. For the rhizobia-legume symbiosis, various mechanisms and diverse surface molecules of both partners have been proposed to mediate in this process.

View Article and Find Full Text PDF

We have explored the potential of commercial polystyrene-divinylbenzene monolithic capillary nanoLC-MS/MS for identifying Sinorhizobium fredii HH103 nodulation outer proteins. Monolithic nanoLC with off-line MALDI-TOF/TOF and on-line ESI-q-oTOF is fast and robust, generating complementary data and offering high-confidence protein identifications from gel bands too weak for successful analysis using traditional approaches. This has allowed identification of two proteins not previously described as being type III-secreted in rhizobia, NopM and NopD.

View Article and Find Full Text PDF

It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans.

View Article and Find Full Text PDF

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S.

View Article and Find Full Text PDF