Publications by authors named "Jose E Gonzalez-Pastor"

Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity.

View Article and Find Full Text PDF

Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question.

View Article and Find Full Text PDF

tRNA modifications are crucial for fine-tuning of protein translation. Queuosine (Q) modification of tRNAs is thought to modulate the translation rate of NAU codons, but its physiological role remains elusive. Therefore, we hypothesize that Q-tRNAs control those physiological processes involving NAU codon-enriched genes (Q-genes).

View Article and Find Full Text PDF

The microorganisms that thrive in Antarctica, one of the coldest environments on the planet, have developed diverse adaptation mechanisms to survive in these extreme conditions. Through functional metagenomics, in this work, 29 new genes related to cold tolerance have been isolated and characterized from metagenomic libraries of microorganisms from the rhizosphere of two Antarctic plants. Both libraries were hosted in two cold-sensitive strains of DH10B Δ and DH10B Δ.

View Article and Find Full Text PDF

Phytochelatins (PCs) are cysteine-rich small peptides, enzymatically synthesized from reduced glutathione (GSH) by cytosolic enzyme phytochelatin synthase (PCS). The open reading frame (ORF) of the gene from the microalgae was heterologously expressed in strain DH5α, to analyze its role in protection against various abiotic agents that cause cellular stress. The transformed strain showed increased tolerance to exposure to different heavy metals (HMs) and arsenic (As), as well as to acidic pH and exposure to UVB, salt, or perchlorate.

View Article and Find Full Text PDF

Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith.

View Article and Find Full Text PDF

The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a β-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays.

View Article and Find Full Text PDF

Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences.

View Article and Find Full Text PDF

Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory.

View Article and Find Full Text PDF

While the dynamics of microbial community assembly driven by environmental perturbations have been extensively studied, our understanding is far from complete, particularly for light-induced perturbations. Extremely halophilic communities thriving in coastal solar salterns are mainly influenced by two environmental factors-salt concentrations and high sunlight irradiation. By experimentally manipulating light intensity through the application of shading, we showed that light acts as a deterministic factor that ultimately drives the establishment of recurrent microbial communities under near-saturation salt concentrations.

View Article and Find Full Text PDF

The capacity to release genetic material into the extracellular medium has been reported in cultures of numerous species of bacteria, archaea, and fungi, and also in the context of multicellular microbial communities such as biofilms. Moreover, extracellular DNA (eDNA) of microbial origin is widespread in natural aquatic and terrestrial environments. Different specific mechanisms are involved in eDNA release, such as autolysis and active secretion, as well as through its association with membrane vesicles.

View Article and Find Full Text PDF

Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family.

View Article and Find Full Text PDF

The bioprospecting of enzymes that operate under extreme conditions is of particular interest for many biotechnological and industrial processes. Nevertheless, there is a considerable limitation to retrieve novel enzymes as only a small fraction of microorganisms derived from extreme environments can be cultured under standard laboratory conditions. Functional metagenomics has the advantage of not requiring the cultivation of microorganisms or previous sequence information to known genes, thus representing a valuable approach for mining enzymes with new features.

View Article and Find Full Text PDF

Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines.

View Article and Find Full Text PDF

The microbial communities from the Tinto River, a natural acid mine drainage environment, were explored to search for novel genes involved in arsenic resistance using a functional metagenomic approach. Seven pentavalent arsenate resistance clones were selected and analysed to find the genes responsible for this phenotype. Insights about their possible mechanisms of resistance were obtained from sequence similarities and cellular arsenic concentration.

View Article and Find Full Text PDF

Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus.

View Article and Find Full Text PDF

The exploration of novel antibiotic resistance determinants in a particular environment may be limited because of the presence of uncultured microorganisms. In this work, a culture-independent approach based on functional metagenomics was applied to search for chloramphenicol resistance genes in agro-industrial wastewater in Lerma de Villada, Mexico. To this end, a metagenomic library was generated in Escherichia coli DH10B containing DNA isolated from environmental samples of the residual arsenic-enriched (10 mg/ml) effluent.

View Article and Find Full Text PDF

Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells.

View Article and Find Full Text PDF

Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance.

View Article and Find Full Text PDF

Extracellular DNA (eDNA) release is a widespread capacity described in many microorganisms. We identified and characterized lysis-independent eDNA production in an undomesticated strain of Bacillus subtilis. DNA fragments are released during a short time in late-exponential phase.

View Article and Find Full Text PDF

The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε(2)) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20-30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1-5×10(-5)). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them.

View Article and Find Full Text PDF

Background: Bacillus subtilis 3610 displays multicellular traits as it forms structurally complex biofilms and swarms on solid surfaces. In addition, B. subtilis encodes and expresses nitric oxide synthase (NOS), an enzyme that is known to enable NO-mediated intercellular signalling in multicellular eukaryotes.

View Article and Find Full Text PDF

The diversity of archaeal communities growing in four hot springs (65-90 °C, pH 6.5) was assessed with 16S rRNA gene primers specific for the domain Archaea. Overall, mainly uncultured members of the Desulfurococcales, the Thermoproteales and the Korarchaeota, were identified.

View Article and Find Full Text PDF

A social behavior named cannibalism has been described during the early stages of sporulation of the Gram-positive Bacillus subtilis. This phenomenon is based on the heterogeneity of sporulating populations, constituted by at least two cell types: (1) sporulating cells, in which the master regulator of sporulation Spo0A is active, and (2) nonsporulating cells, in which Spo0A is inactive. Sporulating cells produce two toxins that act cooperatively to kill the nonsporulating sister cells.

View Article and Find Full Text PDF

Most of the known metal resistance mechanisms are based on studies of cultured microorganisms, and the abundant uncultured fraction could be an important source of genes responsible for uncharacterized resistance mechanisms. A functional metagenomic approach was selected to recover metal resistance genes from the rhizosphere microbial community of an acid-mine drainage (AMD)-adapted plant, Erica andevalensis, from Rio Tinto, Spain. A total of 13 nickel resistant clones were isolated and analyzed, encoding hypothetical or conserved hypothetical proteins of uncertain functions, or well-characterized proteins, but not previously reported to be related to nickel resistance.

View Article and Find Full Text PDF