Background: Spectral data from multiple sources can be integrated into multi-block fusion chemometric models, such as sequentially orthogonalized partial-least squares (SO-PLS), to improve the prediction of sample quality features. Pre-processing techniques are often applied to mitigate extraneous variability, unrelated to the response variables. However, the selection of suitable pre-processing methods and identification of informative data blocks becomes increasingly complex and time-consuming when dealing with a large number of blocks.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
Long-term studies have shown a bias drift over time in the prediction performance of near-infrared spectroscopy measurement systems. This bias drift generally requires extra laboratory reference measurements to detect and correct for this bias. Since these reference measurements are expensive and time consuming, there is a need for advanced methodologies for bias drift monitoring and correction without the need for taking extra samples.
View Article and Find Full Text PDFMonitoring of milk composition can support several dimensions of dairy management such as identification of the health status of individual dairy cows and the safeguarding of dairy quality. The quantification of milk composition has been traditionally executed employing destructive chemical or laboratory Fourier-transform infrared (FTIR) spectroscopy analyses which can incur high costs and prolonged waiting times for continuous monitoring. Therefore, modern technology for milk composition quantification relies on non-destructive near-infrared (NIR) spectroscopy which is not invasive and can be performed on-farm, in real-time.
View Article and Find Full Text PDFToday, measurement of raw milk quality and composition relies on Fourier transform infrared spectroscopy to monitor and improve dairy production and cow health. However, these laboratory analyzers are bulky, expensive and can only be used by experts. Moreover, the sample logistics and data transfer delay the information on product quality, and the measures taken to optimize the care and feeding of the cattle render them less suitable for real-time monitoring.
View Article and Find Full Text PDFWork-related musculoskeletal disorders are a major concern globally affecting societies, companies, and individuals. To address this, a new sensor-based system is presented: the Smart Workwear System, aimed at facilitating preventive measures by supporting risk assessments, work design, and work technique training. The system has a module-based platform that enables flexibility of sensor-type utilization, depending on the specific application.
View Article and Find Full Text PDFIn high-yielding dairy cattle, severe postpartum negative energy balance is often associated with metabolic and infectious disorders that negatively affect production, fertility, and welfare. Mobilization of adipose tissue associated with negative energy balance is reflected through an increased level of nonesterified fatty acids (NEFA) in the blood plasma. Earlier, identification of negative energy balance through detection of increased blood plasma NEFA concentration required laborious and stressful blood sampling.
View Article and Find Full Text PDFPreventive healthcare has attracted much attention recently. Improving people's lifestyles and promoting a healthy diet and wellbeing are important, but the importance of work-related diseases should not be undermined. Musculoskeletal disorders (MSDs) are among the most common work-related health problems.
View Article and Find Full Text PDF