Molecular dynamics simulations of the tensile ultimate properties of polymer crystals require the use of empirical potentials that model bond dissociation. However, fully reactive potentials are computationally expensive such that reactive simulations cannot reach the low strain rates of typical experiments. Here, we present a hybrid approach that uses the simplicity of a classical, nonreactive potential, information from bond dissociation energy calculations, and a probabilistic expression that mimics bond breaking.
View Article and Find Full Text PDFAchieving high-resolution images using dynamic atomic force microscopy (AFM) requires understanding how chemical and structural features of the surface affect image contrast. This understanding is particularly challenging when imaging samples in water. An initial step is to determine how well-characterized surface features interact with the AFM tip in wet environments.
View Article and Find Full Text PDFThe properties of water in confinement are very different from those under bulk conditions. In some cases the melting point of ice may be shifted and one may find either ice, icelike water, or a state in which freezing is completely inhibited. Understanding the dynamics and rheology of water in confined media, such as small nanotubes, is of fundamental importance to the biological properties of micro-organisms at low temperatures, to the development of new devices for preserving DNA samples, and for other biological materials and fluids, lubrication, and development of nanostructured materials.
View Article and Find Full Text PDFWe report the results of extensive molecular dynamics (MD) simulation of water in a carbon nanotube (CNT) with a specific diameter over a wide range of temperatures from 343 to 423 K. In order to characterize the nature of water, we have computed the Kirkwood g-factor, the ten Wolde parameter, the radial distribution, the cage correlation, the intermediate scattering functions, the mean-square displacements of the water molecules, and the connectivity of the oxygen atoms. The computed properties provide evidence for complex behavior.
View Article and Find Full Text PDF