ACS Appl Energy Mater
September 2023
Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets.
View Article and Find Full Text PDFMetal Organic Frameworks (MOFs) offer unparalleled physical and sorption properties due to their chemical tunability and unmatched porosity. MOFs are consequently envisaged to play a key role in commercial gas storage and separation applications. However, it is essential to tackle their current market entry barriers, if mainstream adoption is to be realised.
View Article and Find Full Text PDFMetal-Organic Frameworks (MOFs), thanks to their type V water adsorption isotherms ("S-Shape") and large water capacities, are considered as potential breakthrough adsorbents for heat-pump applications. In particular, Al(OH)-fumarate could enable efficient regeneration at a lower temperature than silica-gel which would allow us to address the conversion of waste heat at low temperature such as found in data centers. Despite its greater adsorption capacity features, heat and mass transport limitations could jeopardize the potential performance of Al(OH)-fumarate.
View Article and Find Full Text PDFWe demonstrate a simple method for real-time monitoring of mechanochemical synthesis of metal-organic frameworks, by measuring changes in pressure of gas produced in the reaction. Using this manometric method to monitor the mechanosynthesis of the zeolitic imidazolate framework ZIF-8 from basic zinc carbonate reveals an intriguing feedback mechanism in which the initially formed ZIF-8 reacts with the CO byproduct to produce a complex metal carbonate phase, the structure of which is determined directly from powder X-ray diffraction data. We also show that the formation of the carbonate phase may be prevented by addition of excess ligand.
View Article and Find Full Text PDFMechanochemical synthesis, i.e., reactions conducted by grinding solid reactants together with no or minimal solvent, has been demonstrated as an excellent technique for the formation of both organic and inorganic compounds.
View Article and Find Full Text PDFMechanochemistry provides a rapid, efficient route to metal-organic framework Zn-MOF-74 directly from a metal oxide and without bulk solvent. In situ synchrotron X-ray diffraction monitoring of the reaction course reveals two new phases and an unusual stepwise process in which a close-packed intermediate reacts to form the open framework. The reaction can be performed on a gram scale to yield a highly porous material after activation.
View Article and Find Full Text PDFGrinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(PPh) as well as the commercially important metal organic frameworks (MOFs) Cu(BTC) (HKUST-1), Zn(2-methylimidazolate) (ZIF-8, MAF-4) and Al(fumarate)(OH).
View Article and Find Full Text PDF