Biochar can enhance the phytoremediation of copper-contaminated soils by improving soil quality and increasing plant growth. However, the impact of biochar varies with the biomass feedstock and soil condition. Our study investigated the effect of biochar from orange bagasse-OBB and coconut husk-CHB and two copper concentrations (0.
View Article and Find Full Text PDFChemosphere
February 2020
Biochar has been recommended as a multi-beneficial amendment for the in situ remediation of heavy metals contaminated soils due to its high recalcitrance, stability, specific surface area and retention capacity, which leads to a long-lasting influence on the immobilization of soil contaminants. The influence of biochar on the availability of heavy metals such as copper is not fully understood and may be related to a change in copper association with soils fractions. Therefore, a long-time laboratory incubation study was set up as a completely randomized design to test the effect of biochar from different sources (coconut husks-CHB, orange bagasse-OBB and sewage sludge-SSB) at two rates of application (30 and 60 t ha) on the distribution of copper in a copper-contaminated soil after 24 months incubation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2019
Biochar has been recently used as an alternative strategy to improve soil quality and plant growth in metal contaminated soils. However, the effects of biochar on gas exchange parameters such photosynthetic rate (A), water use efficiency (WUE) and instantaneous carboxylation efficiency (ICE) in metal tolerant plant species in contaminated soils is still unknown. Such information is important to understand how different biochar types can influence plant biomass production and metal uptake.
View Article and Find Full Text PDF