Publications by authors named "Jose Carlos Valle-Casuso"

Equine infectious anemia virus (EIAV) is an equine lentivirus related to human immunodeficiency virus type 1 (HIV-1). Both viruses are related among the Retroviridae family, but their clinical manifestations are different as EIAV causes a long persistent infection with no progressive immune dysfunction in most cases. Today, no treatment is approved against EIAV, contrary to HIV-1, manageable through antiretroviral therapy, known as HAART (highly active antiretroviral therapy) or cART (combination antiretroviral therapy).

View Article and Find Full Text PDF

Domestic species, including equids, were introduced in the Galapagos Islands in the XIX century. Equine vector-borne diseases are circulating in South America but their occurrence in the Galapagos Island was unknown. The objective of this study was to detect the occurrence of West Nile virus (WNV), Usutu virus (USUV) and equine infectious anemia virus (EIAV) in the four Galapagos Islands raising equids if they were present at a prevalence >1%.

View Article and Find Full Text PDF

This study assessed the anthelmintic resistance in strongylid nematodes against commonly used anthelmintic (AH) drugs in a French galloping racehorse stud farm from March to December 2023. Faecal egg count reduction tests (FECRTs) were conducted in three different groups of Thoroughbred yearlings (a group of 6 males, a group of 13 females and a group of 8 females and 3 males) following the new World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines. The efficacy of fenbendazole was tested in two groups once during the monitoring period (in March), the efficacy of ivermectin in 3 groups twice (in March-April and in November-December) and the efficacy of pyrantel in one group once (in May-June).

View Article and Find Full Text PDF

Grazing equids are constantly exposed to three clinically important gastrointestinal parasites (small strongyles/cyathostomins, Anoplocephala spp. and Parascaris spp.).

View Article and Find Full Text PDF

We have performed an equine influenza (EI) serological study of the equine population in Algeria by testing 298 serum samples collected between February and August 2021 from 5 provinces. The results were obtained performing an NP-ELISA. Our results revealed that 49.

View Article and Find Full Text PDF

In order to determine the prevalence of equine infectious anemia virus (EIAV), Usutu virus (USUV), and West Nile virus (WNV) in eastern Algerian drylands, 340 sera from distinct equids have been collected from 2015 to 2017. Serological analysis for the presence of antibodies against EIAV and flaviviruses was performed using commercially available ELISAs. Sera detected positive, doubtful, or negative close to the doubtful threshold in flavivirus ELISA were tested by the virus neutralization test (VNT), using WNV and USUV strains.

View Article and Find Full Text PDF

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CL of coronaviruses, so that the luminescent biosensor is turned on upon 3CL expression or SARS-CoV-2 infection.

View Article and Find Full Text PDF

Spontaneous control of human immunodeficiency virus (HIV) is generally associated with an enhanced capacity of CD8 T cells to eliminate infected CD4 T cells, but the molecular characteristics of these highly functional CD8 T cells are largely unknown. In the present study, using single-cell analysis, it was shown that HIV-specific, central memory CD8 T cells from spontaneous HIV controllers (HICs) and antiretrovirally treated non-controllers have opposing transcriptomic profiles. Genes linked to effector functions and survival are upregulated in cells from HICs.

View Article and Find Full Text PDF

RNA viruses are responsible for a large variety of animal infections. Equine Arteritis Virus (EAV) is a positive single-stranded RNA virus member of the family Arteriviridae from the order Nidovirales like the Coronaviridae. EAV causes respiratory and reproductive diseases in equids.

View Article and Find Full Text PDF

HIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4 T cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of antiapoptotic clone 11 (AAC-11), an antiapoptotic factor upregulated in many cancers, increased with progressive CD4 T cell memory differentiation in association with the expression of cell cycle, activation, and metabolism genes and was correlated with susceptibility to HIV-1 infection.

View Article and Find Full Text PDF

Interferon (IFN) plays a central role in regulating host immune response to viral pathogens through the induction of IFN-Stimulated Genes (ISGs). IFN also enhances cellular SUMOylation and ISGylation, though the functional interplay between these modifications remains unclear. Here, we used a system-level approach to profile global changes in protein abundance in SUMO3-expressing cells stimulated by IFNα.

View Article and Find Full Text PDF

HIV persists in long-lived infected cells that are not affected by antiretroviral treatment. These HIV reservoirs are mainly located in CD4 T cells, but their distribution is variable in the different subsets. Susceptibility to HIV-1 increases with CD4 T cell differentiation.

View Article and Find Full Text PDF

The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication.

View Article and Find Full Text PDF

HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear.

View Article and Find Full Text PDF

SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation.

View Article and Find Full Text PDF

Background: SAMHD1 is a restriction factor that potently blocks infection by HIV-1 and other retroviruses. We have previously demonstrated that SAMHD1 oligomerizes in mammalian cells by immunoprecipitation. Here we investigated the contribution of SAMHD1 oligomerization to retroviral restriction.

View Article and Find Full Text PDF

Background: Expression of the cellular karyopherin TNPO3/transportin-SR2/Tnp3 is necessary for HIV-1 infection. Depletion of TNPO3 expression in mammalian cells inhibits HIV-1 infection after reverse transcription but prior to integration.

Results: This work explores the role of cleavage and polyadenylation specificity factor subunit 6 (CPSF6) in the ability of TNPO3-depleted cells to inhibit HIV-1 infection.

View Article and Find Full Text PDF
Article Synopsis
  • * In cycling cells, SAMHD1 is phosphorylated at a specific site (T592), which prevents it from blocking retroviral infections, but this phosphorylation does not impact its dNTP-depleting function.
  • * The phosphorylation of SAMHD1 at T592 is regulated by cyclin-dependent kinase 1 (cdk1), indicating that this modification plays a crucial role in its antiviral capabilities.
View Article and Find Full Text PDF

The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1.

View Article and Find Full Text PDF

The human SAMHD1 protein is a novel retroviral restriction factor expressed in myeloid cells. Previous work has correlated the deoxynucleotide triphosphohydrolase activity of SAMHD1 with its ability to block HIV-1 and SIV(mac) infection. SAMHD1 is comprised of the sterile alpha motif (SAM) and histidine-aspartic (HD) domains; however the contribution of these domains to retroviral restriction is not understood.

View Article and Find Full Text PDF

Recent findings suggested that the SUMO-interacting motifs (SIMs) present in the human TRIM5α (TRIM5α(hu)) protein play an important role in the ability of TRIM5α(hu) to restrict N-MLV. Here we explored the role of SIMs in the ability of rhesus TRIM5α (TRIM5α(rh)) to restrict HIV-1, and found that TRIM5α(rh) SIM mutants IL376KK (SIM1mut) and VI405KK (SIM2mut) completely lost their ability to block HIV-1 infection. Interestingly, these mutants also lost the recently described property of TRIM5α(rh) to shuttle into the nucleus.

View Article and Find Full Text PDF

In diverse brain pathologies, astrocytes become reactive and undergo profound phenotypic changes. Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is one of the proteins modified in reactive astrocytes. Downregulation of Cx43 in cultured astrocytes activates c-Src, promotes proliferation, and increases the rate of glucose uptake; however, so far there have been no studies examining whether this cascade of events takes place in reactive astrocytes.

View Article and Find Full Text PDF

Background: SAMHD1 is a nuclear protein that blocks lentiviral infection before reverse transcription in macrophages and dendritic cells. The viral accessory protein Vpx overcomes the SAMHD1-mediated lentiviral block by inducing its proteasomal degradation.

Results: Here, we identified the nuclear localization signal (NLS) of SAMHD1, and studied its contribution to restriction of HIV-1 and SIVmac.

View Article and Find Full Text PDF

TNPO3 is a nuclear importer required for HIV-1 infection. Here, we show that depletion of TNPO3 leads to an HIV-1 block after nuclear import but prior to integration. To investigate the mechanistic requirement of TNPO3 in HIV-1 infection, we tested the binding of TNPO3 to the HIV-1 core and found that TNPO3 binds to the HIV-1 core.

View Article and Find Full Text PDF

In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types.

View Article and Find Full Text PDF