Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens.
View Article and Find Full Text PDFThis study aimed to evaluate the efficacy of a new trivalent vaccine containing inactivated Porcine Circovirus 1-2a and 1-2b chimeras and a bacterin administered to pigs around 3 weeks of age. This trivalent vaccine has already been proved as efficacious in a split-dose regimen but has not been tested in a single-dose scenario. For this purpose, a total of four studies including two pre-clinical and two clinical studies were performed.
View Article and Find Full Text PDFVaccines (Basel)
August 2022
Four studies under preclinical and clinical conditions were performed to evaluate the efficacy of a new trivalent vaccine against Porcine circovirus 2 (PCV-2) infection. The product contained inactivated PCV-1/PCV-2a (cPCV-2a) and PCV-1/PCV-2b (cPCV-2b) chimeras, plus inactivated cell-free antigens, which was administered to piglets in a two-dose regime at 3 days of age and 3 weeks later. The overall results of preclinical and clinical studies show a significant reduction in PCV-2 viraemia and faecal excretion, and lower histopathological lymphoid lesions and PCV-2 immunohistochemistry scores in vaccinated pigs when compared to non-vaccinated ones.
View Article and Find Full Text PDFPorcine circovirus type 2 (PCV2) and () are important swine pathogens for which vaccination is a key control strategy. Three separate studies were performed to evaluate the duration of immunity (DOI) conferred by a novel vaccine combining PCV2a/PCV2b and into a ready-to-use formulation. In each study, three-week-old naïve piglets were vaccinated (Day 0) and challenged 23-weeks later (Day 159) with either PCV2a, PCV2b or .
View Article and Find Full Text PDFInfluenza A viruses cause acute respiratory infections in swine that result in significant economic losses for global pig production. Currently, three different subtypes of influenza A viruses of swine (IAV-S) co-circulate worldwide: H1N1, H3N2, and H1N2. However, the origin, genetic background and antigenic properties of those IAV-S vary considerably from region to region.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFThe emergence of multiple novel lineages of H1 and H3 influenza A viruses in swine has confounded control by inactivated vaccines. Because of substantial genetic and geographic heterogeneity among circulating swine influenza viruses, one vaccine strain per subtype cannot be efficacious against all of the current lineages. We have performed vaccination-challenge studies in pigs to examine whether priming and booster vaccinations with antigenically distinct H3N2 swine influenza viruses could broaden antibody responses and protection.
View Article and Find Full Text PDFAvian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2:pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging.
View Article and Find Full Text PDFH9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine.
View Article and Find Full Text PDF