After undergoing radionuclide therapy, patients generate wastewater with a considerable amount of radioactivity, which can reach levels of as much as 90% of the administered dose. Due to the risk of accumulation after discharge into the sewer, it is advisable to collect this effluent for its treatment prior to final discharge. Delay and decay (natural decomposition of the isotope) is the most commonly used technical method of abating radioactive iodine, but it is frequently criticized as being complex and very expensive.
View Article and Find Full Text PDFJosé Canga Rodríguez, key account manager, Pharmaceutical and Life Sciences, EnviroChemie, and Volker Luh, CEO of EnviroDTS, describe the development, and recent successful application, of a new technology for dealing safely and effectively with the radioactive "wastewater" generated by patients who have undergone radiotherapy in nuclear medicine facilities. The BioChroma process provides what is reportedly not only a more flexible means than traditional "delay and decay" systems of dealing with this "by-product" of medical treatment, but also one that requires less plant space, affords less risk of leakage or cross-contamination, and is easier to install.
View Article and Find Full Text PDF