Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations.
View Article and Find Full Text PDFNew manufacturing processes for metal parts such as additive manufacturing (AM) provide a technological development for the aeronautical and aerospace industries, since these AM processes are a means to reduce the weight of the parts, which generate cost savings. AM techniques such as Laser Powder Bed Fusions (LPBF) and Electron Beam Fusion (EBM), provided an improvement in mechanical properties, corrosion resistance, and thermal stability at temperatures below 400 °C, in comparison to conventional methods. This research aimed to study the oxidation kinetics of Ti-6Al-4V alloys by conventional and Electron Beam Additive Manufacturing.
View Article and Find Full Text PDFIn the aeronautical industry, Al-Cu alloys are used as a structural material in the manufacturing of commercial aircraft due to their high mechanical properties and low density. One of the main issues with these Al-Cu alloy systems is their low corrosion resistance in aggressive substances; as a result, Al-Cu alloys are electrochemically treated by anodizing processes to increase their corrosion resistance. Hard anodizing realized on AA2024 was performed in citric and sulfuric acid solutions for 60 min with constant stirring using current densities 3 and 4.
View Article and Find Full Text PDFThe aim of this work was to evaluate the corrosion behavior of the AA6061 and AlSi10Mg alloys produced by extruded and additive manufacturing (selective laser melting, SLM). Alloys were immersed in two electrolytes in HO and 3.5 wt.
View Article and Find Full Text PDFThe author wishes to make the following correction to this paper [...
View Article and Find Full Text PDFThe titanium alloy, Ti6Al4V, is used in dentistry for dental implants because of its excellent resistance to corrosion and its high biocompatibility. However, periimplantitis is considered the main reason for treatment failure. The Ti6Al4V alloy was used to study the corrosion behavior for dental implant applications, using an experimental arrangement of three electrodes with the bacteria and , in addition to Ringer's lactate as electrolytes, at 37 °C and a pH of 5.
View Article and Find Full Text PDFIncreasingly stringent environmental regulations in different sectors of industry, especially the aeronautical sector, suggest the need for more investigations regarding the effect of environmentally friendly corrosion protective processes. Passivation is a finishing process that makes stainless steels more rust resistant, removing free iron from the steel surface resulting from machining operations. This results in the formation of a protective oxide layer that is less likely to react with the environment and cause corrosion.
View Article and Find Full Text PDF