Introducing spatial prior information in hyperspectral imaging (HSI) analysis has led to an overall improvement of the performance of many HSI methods applied for denoising, classification, and unmixing. Extending such methodologies to nonlinear settings is not always straightforward, specially for unmixing problems where the consideration of spatial relationships between neighboring pixels might comprise intricate interactions between their fractional abundances and nonlinear contributions. In this paper, we consider a multiscale regularization strategy for nonlinear spectral unmixing with kernels.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2020
Spectral variability in hyperspectral images can result from factors including environmental, illumination, atmospheric and temporal changes. Its occurrence may lead to the propagation of significant estimation errors in the unmixing process. To address this issue, extended linear mixing models have been proposed which lead to large scale nonsmooth ill-posed inverse problems.
View Article and Find Full Text PDFImage fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images and circumventing the main limitation of this imaging modality. Existing HS-MS fusion algorithms, however, neglect the spectral variability often existing between images acquired at different time instants.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2019
In this paper, a new video super-resolution reconstruction (SRR) method with improved robustness to outliers is proposed. Although the regularized least mean squares (R-LMSs) are one of the SRR algorithms with the best reconstruction quality for its computational cost, and is naturally robust to registration inaccuracies, its performance is known to degrade severely in the presence of innovation outliers. By studying the proximal point cost function representation of the R-LMS iterative equation, a better understanding of its performance under different situations is attained.
View Article and Find Full Text PDFKernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large-scale applications.
View Article and Find Full Text PDFMixing phenomena in hyperspectral images depend on a variety of factors, such as the resolution of observation devices, the properties of materials, and how these materials interact with incident light in the scene. Different parametric and nonparametric models have been considered to address hyperspectral unmixing problems. The simplest one is the linear mixing model.
View Article and Find Full Text PDFWe present a study of the metabolism of the Mycobacterium tuberculosis after exposure to antibiotics using proteomics data and flux balance analysis (FBA). The use of FBA to study prokaryotic organisms is well-established and allows insights into the metabolic pathways chosen by the organisms under different environmental conditions. To apply FBA a specific objective function must be selected that represents the metabolic goal of the organism.
View Article and Find Full Text PDF