Aims: To evaluate the predictive value of a contemporary type 2 diabetes (T2D) polygenic score (PGS) in detecting incident diabetes across a range of diabetes risk factors.
Materials And Methods: We analysed participants in the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) trial (ClinicalTrials.gov, number NCT0176463), which compared the efficacy of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor evolocumab versus placebo in lowering cardiovascular outcomes in participants with stable atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg/dL (1.
Background: DNA methylation differences are associated with kidney function and diabetic kidney disease (DKD), but prospective studies are scarce. Therefore, we aimed to study DNA methylation in a prospective setting in the Finnish Diabetic Nephropathy Study type 1 diabetes (T1D) cohort.
Methods: We analysed baseline blood sample-derived DNA methylation (Illumina's EPIC array) of 403 individuals with normal albumin excretion rate (early progression group) and 373 individuals with severe albuminuria (late progression group) and followed-up their DKD progression defined as decrease in eGFR to <60 mL/min/1.
Importance: Immune checkpoint inhibitors (ICIs) have revolutionized cancer care; however, accompanying immune-related adverse events (irAEs) confer substantial morbidity and occasional mortality. Life-threatening irAEs may require permanent cessation of ICI, even in patients with positive tumor response. Therefore, it is imperative to comprehensively define the spectrum of irAEs to aid individualized decision-making around the initiation of ICI therapy.
View Article and Find Full Text PDFPartitioned polygenic scores (pPS) have been developed to capture pathophysiologic processes underlying type 2 diabetes (T2D). We investigated the association of T2D pPS with diabetes-related traits and T2D incidence in the Diabetes Prevention Program. We generated five T2D pPS (β-cell, proinsulin, liver/lipid, obesity, lipodystrophy) in 2,647 participants randomized to intensive lifestyle, metformin, or placebo arms.
View Article and Find Full Text PDFReduced insulin sensitivity (insulin resistance) is a hallmark of normal physiology in late pregnancy and also underlies gestational diabetes mellitus (GDM). We conducted transcriptomic profiling of 434 human placentas and identified a positive association between insulin-like growth factor binding protein 1 gene (IGFBP1) expression in the placenta and insulin sensitivity at ~26 weeks gestation. Circulating IGFBP1 protein levels rose over the course of pregnancy and declined postpartum, which, together with high gene expression levels in our placenta samples, suggests a placental or decidual source.
View Article and Find Full Text PDFLancet Reg Health Am
May 2024
Background: Differences in the prevalence of four diabetes subgroups have been reported in Mexico compared to other populations, but factors that may contribute to these differences are poorly understood. Here, we estimate the prevalence of diabetes subgroups in Mexico and evaluate their correlates with indicators of social disadvantage using data from national representative surveys.
Methods: We analyzed serial, cross-sectional Mexican National Health and Nutrition Surveys spanning 2016, 2018, 2020, 2021, and 2022, including 23,354 adults (>20 years).
Background: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD.
View Article and Find Full Text PDFContext: Elevated body mass index (BMI) in pregnancy is associated with adverse maternal and fetal outcomes. The placental transcriptome may elucidate molecular mechanisms underlying these associations.
Objective: We examined the association of first-trimester maternal BMI with the placental transcriptome in the Gen3G prospective cohort.
We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions.
View Article and Find Full Text PDF