Publications by authors named "Jose Bico"

On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface.

View Article and Find Full Text PDF

Viscosity, which impacts the rate of haemolymph circulation and heat transfer, is one of the transport properties that affects the performance of an insect. Measuring the viscosity of insect fluids is challenging because of the small amount available per specimen. Using particle tracking microrheology, which is well suited to characterise the rheology of the fluid part of the haemolymph, we studied the plasma viscosity in the bumblebee Bombus terrestris.

View Article and Find Full Text PDF

The crystal structure of atomically defined colloidal II-VI semiconductor nanoplatelets (NPLs) induces the self-assembly of organic ligands over thousands of square nanometers on the top and bottom basal planes of these anisotropic nanoparticles. NPLs curl into helices under the influence of the surface stress induced by these ligands. We demonstrate the control of the radii of NPL helices through the ligands described as an anchoring group and an aliphatic chain of a given length.

View Article and Find Full Text PDF

We show that ribbed elastic strips under tension present large spontaneous curvature and may close into tubes. In this single material architectured system, transverse bending results from a bilayer effect induced by Poisson contraction as the textured ribbon is stretched. Surprisingly, the induced curvature may reverse if ribs of different orientations are considered.

View Article and Find Full Text PDF

The design of advanced functional devices often requires the use of intrinsically curved geometries that belong to the realm of non-Euclidean geometry and remain a challenge for traditional engineering approaches. Here, it is shown how the simple deflection of thick meta-plates based on hexagonal cellular mesostructures can be used to achieve a wide range of intrinsic (i.e.

View Article and Find Full Text PDF

Lack of stiffness often limits thin shape-shifting structures to small scales. The large in-plane transformations required to distort the metrics are indeed commonly achieved by using soft hydrogels or elastomers. We introduce here a versatile single-step method to shape-program stiff inflated structures, opening the door for numerous large scale applications, ranging from space deployable structures to emergency shelters.

View Article and Find Full Text PDF

Inflatable structures offer a path for light deployable structures in medicine, architecture, and aerospace. In this study, we address the challenge of programming the shape of thin sheets of high-stretching modulus cut and sealed along their edges. Internal pressure induces the inflation of the structure into a deployed shape that maximizes its volume.

View Article and Find Full Text PDF

We study the sedimentation of highly viscous droplets confined inside Hele-Shaw cells with textured walls of controlled topography. In contrast with common observations on superhydrophobic surfaces, roughness tends here to significantly increase viscous friction, thus substantially decreasing the droplets mobility. However, reducing confinement induces a jump in the velocity as droplets can slide on a lubricating layer of the surrounding fluid thicker than the roughness features.

View Article and Find Full Text PDF

Shape-morphing structures are at the core of future applications in aeronautics, minimally invasive surgery, tissue engineering and smart materials. However, current engineering technologies, based on inhomogeneous actuation across the thickness of slender structures, are intrinsically limited to one-directional bending. Here, we describe a strategy where mesostructured elastomer plates undergo fast, controllable and complex shape transformations under applied pressure.

View Article and Find Full Text PDF

Dielectric elastomer sheets undergo in-plane expansion when stimulated by a transverse electric field. We study experimentally how dielectric plates subjected to a non-uniform voltage distribution undergo buckling instabilities. Two different configurations involving circular plates are investigated: plates freely floating on a bath of water, and plates clamped on a frame.

View Article and Find Full Text PDF

We show the self-assembly through twisting and bending of side by side ribbons under the action of capillary forces. Micro-ribbons made of silicon nitride are batch assembled at the wafer scale. We study their assembly as a function of their dimensions and separating distance.

View Article and Find Full Text PDF

We describe the peeling of an elastomeric strip adhering to a glass plate through van der Waals interactions in the limit of a zero peeling angle. In contrast to classical studies that predict a saturation of the pulling force, in this lap test configuration the force continuously increases, while a sliding front propagates along the tape. The strip eventually detaches from the substrate when the front reaches its end.

View Article and Find Full Text PDF

Straight cracks are observed in thin coatings under residual tensile stress, resulting into the classical network pattern observed in china crockery, old paintings, or dry mud. Here, we present a novel fracture mechanism where delamination and propagation occur simultaneously, leading to the spontaneous self-replication of an initial template. Surprisingly, this mechanism is active below the standard critical tensile load for channel cracks and selects a robust interaction length scale on the order of 30 times the film thickness.

View Article and Find Full Text PDF

We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized.

View Article and Find Full Text PDF

It is often postulated that quasistatic cracks propagate along the direction allowing fracture for the lowest load. Nevertheless, this statement is debated, in particular for anisotropic materials. We performed tearing experiments in anisotropic brittle thin sheets that validate this principle in the case of weak anisotropy.

View Article and Find Full Text PDF

We study the peculiar wrinkling pattern of an elastic plate stamped into a spherical mold. We show that the wavelength of the wrinkles decreases with their amplitude, but reaches a minimum when the amplitude is of the order of the thickness of the plate. The force required for compressing the wrinkled plate presents a maximum independent of the thickness.

View Article and Find Full Text PDF

We show that thin sheets under boundary confinement spontaneously generate a universal self-similar hierarchy of wrinkles. From simple geometry arguments and energy scalings, we develop a formalism based on wrinklons, the localized transition zone in the merging of two wrinkles, as building blocks of the global pattern. Contrary to the case of crumpled paper where elastic energy is focused, this transition is described as smooth in agreement with a recent numerical work [R.

View Article and Find Full Text PDF

We study the adhesion of an elastic sheet on a rigid spherical substrate. Gauss's Theorema Egregium shows that this operation necessarily generates metric distortions (i.e.

View Article and Find Full Text PDF

The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in "flexible electronics." The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination "blisters.

View Article and Find Full Text PDF

Aggregation processes generally lead to broad distributions of sizes involving exponential tails. Here, experiments on the capillary-driven coalescence of regularly spaced flexible structures yields a self-similar distribution of sizes with no tail. At a given step, the physical process imposes a maximal size for the aggregates, which appears as the relevant scale for the distribution.

View Article and Find Full Text PDF

The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally.

View Article and Find Full Text PDF

We discuss the rise of a liquid inside an angular capillary tube. It is shown that for a wetting liquid, the height of the rise is (as usually) inversely proportional to the length which characterizes the confinement. The exact laws deduced from energetic considerations are found to be in excellent agreement with the data.

View Article and Find Full Text PDF

We investigated why wet hair clumps into bundles by dunking a model brush of parallel elastic lamellae into a perfectly wetting liquid. As the brush is withdrawn, pairs of bundles aggregate successively, forming complex hierarchical patterns that depend on a balance between capillary forces and the elasticity of the lamellae. This capillary-driven self-assembly of flexible structures, which occurs in the tarsi of insects and in biomimetic adhesives but which can also damage micro-electromechanical structures or carbon nanotube 'carpets', represents a new type of coalescence process.

View Article and Find Full Text PDF

When a fiber is brought into contact with a soft etching liquid, a conical tip is generally shaped. We show here that the use of corrosive liquids which release gases during the etching reaction may lead to original self-similar shapes, because of successive pinning and detachment of the meniscus. The conditions for the formation of this shape and its evolution are described.

View Article and Find Full Text PDF