A newly designed C-symmetric disc-shaped chromophore, , features electron accepting naphthalene diimides linked to an electron donor BTT core. self-assembles in apolar solvents into highly ordered, chiral supramolecular fibers through π-π and 3-fold hydrogen-bonding interactions. This leads to a cooperative formation of plane-to-plane stacking of BTTs and J-aggregation of the outer NDIs.
View Article and Find Full Text PDFDevising energy-efficient strategies for the depolymerization of plastics and the recovery of their structural components in high yield and purity is key to a circular plastics economy. Here, we report a case study in which we demonstrate that vinylogous urethane (VU) vitrimers synthesized from bis-polyethylene glycol acetoacetates (aPEG) and tris(2-aminoethyl)amine can be degraded by water at moderate temperature with almost quantitative recovery (≈98 %) of aPEG. The rate of depolymerization can be controlled by the temperature, amount of water, molecular weight of aPEG, and composition of the starting material.
View Article and Find Full Text PDFHigh-voltage cathode materials are important for the implementation of high-energy-density Li-ion batteries. However, with increasing cut-off voltages, interfacial instabilities between electrodes and the electrolyte limit their commercial development. This study addresses this issue by proposing a new electrolyte additive, (3-aminopropyl)triethoxysilane (APTS).
View Article and Find Full Text PDFThis paper presents a theoretical investigation of the design of a new actuator type made of anisotropic colloidal particles grafted with stimuli-responsive polymer chains. These artificial muscles combine the osmotic actuation principle of stimuli-responsive hydrogels with the structural alignment of colloidal liquid crystals to achieve directional motion. The solubility of the stimuli-responsive polymer in the neutral state, its degree of polymerization, the salt concentration, and the grafting density of the polymer chains on the surface of the colloidal particles are investigated and identified as important for actuator performance and tunability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability.
View Article and Find Full Text PDFSupramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures.
View Article and Find Full Text PDFIntroduction: Pregnant women continue to be vulnerable to COVID-19, and their immunosuppressed state could put them at greater risk of developing more severe forms of the disease. In Colombia and Latin America, there are few studies on the immune response of the newborn against SARS-CoV-2.
Aim: To determine the prevalence of SARS-CoV-2 infection in umbilical cord blood in two hospital centers in Córdoba and Sucre.
Two-dimensional (2D) nanomaterials have attracted interest from the scientific community due to their unique properties. The production of these materials has been carried out by diverse methodologies, the liquid phase exfoliation being the most promising one due to its simplicity and potential scalability. The use of several stabilizers allows to obtain dispersions of these 2D nanomaterials in solvents with low boiling points.
View Article and Find Full Text PDFCovalent mechanophores display the cleavage of a weak covalent bond when a sufficiently high mechanical force is applied. Three different covalent bond breaking mechanisms have been documented thus far, including concerted, homolytic, and heterolytic scission. Motifs that display heterolytic cleavage typically separate according to non-scissile reaction pathways that afford zwitterions.
View Article and Find Full Text PDFThe assembly of donor-acceptor molecules charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS).
View Article and Find Full Text PDFBackground: Serological evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an alternative that allows us to determine the prevalence and dynamics of this infection in populations. The goal of this study was to determine the clinical and sociodemographic dynamics of SARS-CoV-2 infection in a region of the Colombian Caribbean.
Methods: Between July and November 2020, a cross-sectional observational study was carried out in Córdoba, located in northeast Colombia in the Caribbean area.
Synthetic stimuli responsive supramolecular polymers attract increasing interest for their ability to mimic the unique properties of natural assemblies. Here we focus on the well-studied benzene-1,3,5-tricarboxamide (BTA) motif, and substitute it with two (S)-3,7-dimethyloctyl groups and an azobenzene photoswitch. We demonstrate the UV (λ=365 nm) induced depolymerisation of the helical hydrogen-bonded polymers in methylcyclohexane (MCH) through circular dichroism and UV-vis spectroscopy in dilute solution (15 μm), and NMR and iPAINT super-resolution microscopy in concentrated solution (300 μm).
View Article and Find Full Text PDFMolecular motors and switches change conformation under the influence of an external stimulus, e.g. light.
View Article and Find Full Text PDFWe report two families of naphthalenediimides (NDIs) symmetrically functionalized with discrete carbon chains comprising up to 55 carbon atoms (, = 39, 44, 50, and 55) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite interface (1-PO/HOPG interface). The compounds differ by the presence or absence of two or three internal double bonds in the carbon chains (unsaturated and saturated , respectively). Combinatorial distributions of geometrical isomers displaying either the - or -configuration at each double bond are obtained for the unsaturated compounds.
View Article and Find Full Text PDFThe development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC -NDI-uC , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene (PyrOR) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC -NDI-uC template enabled control over molecular interactions and facilitated adsorption.
View Article and Find Full Text PDFWe present the synthesis and self-assembly of a chiral bis(urea) amphiphile and show that chirality offers a remarkable level of control towards different morphologies. Upon self-assembly in water, the molecular-scale chiral information is translated to the mesoscopic level. Both enantiomers of the amphiphile self-assemble into chiral twisted ribbons with opposite handedness, as supported by Cryo-TEM and circular dichroism (CD) measurements.
View Article and Find Full Text PDFThe synthesis and characterization of a series of light-driven third-generation molecular motors featuring various structural modifications at the central aromatic core are presented. We explore a number of substitution patterns, such as 1,2-dimethoxybenzene, naphthyl, 1,2-dichlorobenzene, 1,1':2',1″-terphenyl, 4,4″-dimethoxy-1,1':2',1″-terphenyl, and 1,2-dicarbomethoxybenzene, considered essential for designing future responsive systems. In many cases, the synthetic routes for both synthetic intermediates and motors reported here are modular, allowing for their post-functionalization.
View Article and Find Full Text PDFOne of the most appealing features of supramolecular assemblies is their ability to respond to external stimuli due to their noncovalent nature. This provides the opportunity to gain control over their size, morphology, and chemical properties and is key toward some of their applications. However, the design of supramolecular systems able to respond to multiple stimuli in a controlled fashion is still challenging.
View Article and Find Full Text PDFAchieving long-range order with surface-supported supramolecular assemblies is one of the pressing challenges in the prospering field of non-covalent surface functionalization. Having access to defect-free on-surface molecular assemblies will pave the way for various nanotechnology applications. Here we report the synthesis of two libraries of naphthalenediimides (NDIs) symmetrically functionalized with long aliphatic chains (C and C) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface.
View Article and Find Full Text PDFWe report the synthesis and self-assembly behavior of a chiral C-symmetrical benzene-tricarboselenoamide. The introduction of the selenoamide moiety enhances the dipolar character of the supramolecular interaction and confers a remarkable thermal stability to the supramolecular polymers obtained.
View Article and Find Full Text PDFEnzymes are widely employed to reduce the environmental impact of chemical industries as biocatalysts improve productivity and offer high selectively under mild reaction conditions in a diverse range of chemical transformations. The poor stability of biomacromolecules under reaction conditions is often a critical bottleneck to their application. Protein engineering or immobilization onto solid substrates may remedy this limitation but, unfortunately, this is often at the expense of catalytic potency or substrate specificity.
View Article and Find Full Text PDFThe combination of switchable dipolar side groups and the semiconducting core of the newly synthetized C3-symmetric benzotrithiophene molecule (BTTTA) leads to an ordered columnar material showing continuous tunability from injection- to bulk-limited conductivity modulation.
View Article and Find Full Text PDFChirality plays a central role in biomolecular recognition and pharmacological activity of drugs and can even lead to new functions such as spin filters. Although there have been significant advances in understanding and controlling the helical organization of enantiopure synthetic molecular systems, rationally dictating the assembly of mixtures of enantiomer (including racemates) is nontrivial. Here we demonstrate that a subtle change in molecular structure coupled with the understanding of assembly processes of enantiomers and racemates, in both dilute solution and concentrated gels, acts as a stepping stone to rationally control the organization in the solid-state.
View Article and Find Full Text PDFAccess to chiral calix[4]arenes can unlock novel supramolecular architectures for enantioselective catalysis and molecular recognition. However, accessibility to these structures has been significantly hindered so far. We report herein the synthesis and characterization of di- and trifunctionalized cone-calix[4]arenes featuring a lactone moiety spanning the distal positions at the upper rim.
View Article and Find Full Text PDFThe noncovalent functionalization of surfaces has gained widespread interest in the scientific community, and it is progressively becoming an extremely productive research field offering brand new directions for both supramolecular and materials chemistry. As the end-groups often play a dominant role in the surface properties obtained, creating loops with end-groups only at the surface will lead to unexpected architectures and hence properties. Here we report the self-assembly of discrete block molecules-structures in-between block copolymers and liquid crystals-featuring oligodimethylsiloxanes (ODMS) end-capped with naphthalenediimides (NDIs) at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface.
View Article and Find Full Text PDF