Publications by authors named "Jose Antonio Sanchez-Fernandez"

Supramolecular structures with specific applications are a pillar in several areas of science. Thus, from a contemporary point of view, there are several reasons to embrace a systematic order of the supramolecular concept itself. First, the structuring of a supramolecular material seems safer now than it did decades ago.

View Article and Find Full Text PDF

This study investigates electrospun fibers of metal-organic frameworks (MOFs), particularly CuBTC and ZIF-8, in polyacrylonitrile (PAN) for the solid-phase extraction (SPE) of Tamoxifen (TAM) and its metabolites (NDTAM, ENDO, and 4OHT) from human blood plasma. The focus is on the isolation, pre-concentration, and extraction of the analytes, aiming to provide a more accessible and affordable breast cancer patient-monitoring technology. The unique physicochemical properties of MOFs, such as high porosity and surface area, combined with PAN's stability and low density, are leveraged to improve SPE efficiency.

View Article and Find Full Text PDF

Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications.

View Article and Find Full Text PDF

Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs.

View Article and Find Full Text PDF

In recent years, researchers working in biomedical science and technology have investigated alternatives for enhancing the mechanical properties of biomedical materials. In this work, sodium alginate (SA) hydrogel-reinforced nanoparticles (NPs) of hydroxyapatite (HA) were prepared to enhance the mechanical properties of this polymer. Compression tests showed an increase of 354.

View Article and Find Full Text PDF

In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM) applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs.

View Article and Find Full Text PDF

The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater.

View Article and Find Full Text PDF