The textile mill is one of the most water-consuming industries. Wastewater production is very high, and among the main generated pollutants are dyes. In particular, jeans finishing, which is performed all over the world, generates wastewater with indigo dye that has to be eliminated before discharge.
View Article and Find Full Text PDFChemosphere
April 2024
In this work, the bioremediation of wastewater from the textile industry with indigo dye content was carried out using combined bioaugmentation, bioventilation, and biostimulation techniques. Initially, the inoculum was prepared by isolating the microorganisms from the textile wastewater in a 2 L bioreactor. Then, the respirometry technique was implemented to determine the affinity of the microorganisms and the substrate by measuring CO and allowed the formulation of an empirical mathematical model for the growth kinetics of the microorganism.
View Article and Find Full Text PDFThe textile industry generates large volumes of water characterized mainly by an intense color coming from dyes that are difficult to process due to their synthetic base and the presence of aromatic components. Due to the stricter regulation on the discharge of these effluents, in order to reduce dye waste before discharge into natural channels, alternatives are being sought to manage this wastewater. In this work, the concentration of dyes in simulated wastewater from the textile industry was studied by forward osmosis (with a cellulose triacetate CTA membrane), with the aim of concentrating the dye for its future recovery and reincorporation into the production process.
View Article and Find Full Text PDFMembranes (Basel)
August 2023
Currently, understanding the dynamics of the interaction between the agents in a process is one of the most important factors regarding its operation and design. Membrane processes for industrial wastewater management are not strangers to this topic. One such example is the concentration of compounds with high added value, such as the phenolic compounds present in olive mill wastewater (OMW).
View Article and Find Full Text PDFIn urban wastewater treatment, the sludge generated is treated by anaerobic digestion, to be subsequently dehydrated by centrifuges. Currently, the liquid fraction obtained in this dehydration process is recirculated at the head of the treatment plant. However, its high nitrogen and phosphorus content makes it an effluent with high added value.
View Article and Find Full Text PDFManagement of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated.
View Article and Find Full Text PDFNowadays, alternative options to conventional wastewater treatment should be studied due to rising concerns emerged by the presence of pharmaceuticals compounds (PhCs) in the aquatic environment. In this work, a combined system including biological treatment by activated sludge plus adsorption with activated carbon is proposed to remove three selected drugs (acetaminophen (ACT), caffeine (CAF) and ibuprofen (IBU)) in a concentration of 2 mg L of each one. For it three sequencing batch reactors (SBR) were operated.
View Article and Find Full Text PDFSci Total Environ
December 2019
A complete study about the effects of 3,3',4',5-tetrachlorosalicylanilide (TCS) on organic matter elimination performance, sludge production and on the microbial community of a biological wastewater treatment process has been performed. For this purpose two sequencing batch reactors (SBR) worked in parallel for 43 days with 0.8 mg·L of TCS (SBR-1) and without this metabolic uncoupler (SBR-2).
View Article and Find Full Text PDFTable olive processing wastewaters (TOPW) have high salt concentration and total phenolic content (TPC) causing many environmental problems. To reduce them, ultrafiltration (UF) was applied for treating TOPW. However, NaCl, which is the main responsible of salinity in TOPW, and phenols are small molecules that cannot be separated by conventional UF membranes.
View Article and Find Full Text PDFMore demanding legal regulations for the wastewater disposal and water scarcity make necessary wastewater reuse in the industry. In particular, textile industry generates large amounts of wastewater with a high concentration of pollutants. Even though present biological or physical-chemical treatments are broadly in place, the quality of the final effluent is not good enough to allow its direct reuse.
View Article and Find Full Text PDF