Publications by authors named "Jose Antonio Magdalena"

Article Synopsis
  • Wine lees, a waste product from winemaking, have untapped potential for producing valuable compounds like carboxylic acids, particularly acetate, due to their high ethanol and low carbohydrate levels.
  • In a study, both white and red wine lees were tested for anaerobic acetate production under specific conditions, revealing that white wine lees had similar fermentation success with endogenous microbes as with added inoculum, while red wine lees performed poorly without external help.
  • The research showed that acetate consistently made up a large portion of the end products (58-72%), and when red wine lees were co-fermented with activated sludge, additional fatty acids like caproate and heptanoate were produced, indicating strong potential for integrating this process into bi
View Article and Find Full Text PDF
Article Synopsis
  • Single cell protein (SCP) is being explored as a sustainable protein source by utilizing waste materials in a circular economy, focusing on using gaseous substrates for safer and cleaner production.
  • The study used a consortium of phototrophic purple bacteria (PPB) to generate SCP from hydrogen (H) and carbon monoxide (CO), finding that optimal growth conditions occurred at pH 7, 25°C, and light intensities above 30 W·m.
  • Results showed high biomass and protein yields, with over 50% protein content in the resulting SCP, indicating its efficiency and potential for use as animal feed.
View Article and Find Full Text PDF

Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization.

View Article and Find Full Text PDF

This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.

View Article and Find Full Text PDF

Hydrogen production from food waste by coupling dark fermentation (DF) and microbial electrolysis cells (MEC) was studied. Metabolic patterns in DF, their effects on MECs efficiency, and the energy output of the coupling were investigated. Mesophilic temperature and acidic pH 5.

View Article and Find Full Text PDF

The organic fraction of municipal solid waste (OFMSW) is an appealing feedstock for bioethanol production due to its richness in cellulosic materials. After fermentation and distillation, the remaining residue constitutes a source of unconsumed carbohydrates, proteins and lipids. These macromolecules can be further used via anaerobic digestion (AD) for bioenergy purposes to offset bioethanol production costs.

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) are platform molecules with numerous applications. They can be obtained by adjusting the operational conditions of anaerobic digestion to avoid methanogenesis while focusing on fermentative stages. There are gaps in the knowledge of how, from a life-cycle perspective, the fermentative process performs in VFAs production from waste, including environmental consequences of substituting common commodities in the current market.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae.

View Article and Find Full Text PDF

Anaerobic degradation of enzymatically pretreated Chlorella vulgaris was aimed in an upflow anaerobic sludge blanket reactor (UASB) to evaluate the organic loading rate (OLR) effect on biomass valorization. Low OLRs resulted in high methane yields (171 mL CH/g CODin) at low hydraulic retention time (HRT of 6 days). Firmicutes (35-43%), Bacteroidetes (17-18%) and Euryarchaeota (11%) dominated at low OLRs, promoting methanogenic activity.

View Article and Find Full Text PDF

Disturbances in anaerobic digestion (AD) negatively impact the overall reactor performance. These adverse effects have been widely investigated for methane generation. However, AD recently appeared as a potential technology to obtain volatile fatty acids (VFAs) and thus, the impact of process disturbances must be evaluated.

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) are chemical building blocks for industries, and are mainly produced via the petrochemical pathway. However, the anaerobic fermentation (AF) process gives a potential alternative to produce these organic acids using renewable resources. For this purpose, waste streams, such as microalgae biomass, might constitute a cost-effective feedstock to obtain VFAs.

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) are regarded as building blocks with a wide range of applications, including biofuel production. The traditional anaerobic digestion used for biogas production can be alternatively employed for VFAs production. The present study aimed at maximizing VFAs productions from Chlorella vulgaris through anaerobic digestion by assessing the effect of stepwise organic loading rates (OLR) increases (3, 6, 9, 12 and 15 g COD L d).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how thermal and chemical pretreatments can enhance the production of volatile fatty acids (VFAs) from protein-rich waste like microalgae biomass using anaerobic sludge.
  • Various thermal treatments were tested at different temperatures and times, along with chemical pretreatments using 2-bromoethanesulfonate (BES) at different concentrations.
  • Results showed that thermal pretreatments significantly increased VFA yields, with acetic acid being dominant at higher temperatures and propionic acid prevalent at lower temperatures, suggesting guidelines for effective sludge pretreatment to maximize VFA production.
View Article and Find Full Text PDF

Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts.

View Article and Find Full Text PDF

Volatile fatty acids (VFAs) produced via anaerobic digestion (AD) are regarded as a low cost production process of building blocks of interest for the chemical industry. In this study, VFAs and methane production were assessed in batch reactors at different temperature ranges (psychrophilic 25°C, mesophilic 35°C, thermophilic 50°C) and different pH values (5.5 and 7.

View Article and Find Full Text PDF
Article Synopsis
  • Biogas generation from microalgae biomass is the simplest method to create bioenergy, but optimizing the breakdown of cell walls during anaerobic digestion is crucial for efficiency.
  • Enzymatic pretreatments are particularly effective for disrupting microalgae, with findings showing that adding protease can enhance methane production, despite potential inhibition caused by excess ammonium nitrogen.
  • Solutions to the inhibition problem include using low-nitrogen growth conditions for microalgae and employing ammonia-tolerant anaerobic inocula, highlighting the importance of microalgae proteins in the anaerobic digestion process.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: