Publications by authors named "Jose Antonio Daros"

represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from (GOX).

View Article and Find Full Text PDF

Viral nanoparticles (VNPs) are self-assembled nanometric complexes whose size and shape are similar to those of the virus from which they are derived. VNPs are arousing great attention due to potential biotechnological applications in fields like nanomedicine and nanotechnology because they allow the presentation of polypeptides of choice linked to the virus structural proteins. Starting from tobacco etch virus (TEV), a plant plus-strand RNA virus that belongs to the genus (family ), here we describe the development of recombinant hybrid VNPs in plants able of exposing simultaneously different proteins on their surface.

View Article and Find Full Text PDF

Viroids that belong to genera Avsunviroid and Pelamovirod (family Avsunviroidae) replicate and accumulate in the chloroplasts of infected cells. In this report, we confirmed by RNA in situ hybridization using digoxigenin-UTP-labelled riboprobes that the positive strands of eggplant latent viroid (ELVd), the only member of genus Elaviroid within the family Avsunviroidae, also accumulate in the chloroplasts of infected cells. However, comparison of ELVd in situ hybridization signals with those from bona fide chloroplastic and nuclear non-coding RNAs, such as chloroplast 5S rRNA and U1 small nuclear RNA, supports the notion that this viroid is also present in the nuclei of infected cells.

View Article and Find Full Text PDF

Virus-induced genome editing (VIGE) leverages viral vectors to deliver CRISPR-Cas components into plants for robust and flexible trait engineering. We describe here a VIGE approach applying an RNA viral vector based on potato virus X (PVX) for genome editing of tomato, a mayor horticultural crop. Viral delivery of single-guide RNA into Cas9-expressing lines resulted in efficient somatic editing with indel frequencies up to 58%.

View Article and Find Full Text PDF

Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity.

View Article and Find Full Text PDF

Crocins are glucosylated apocarotenoids present in flowers and fruits of a few plant species, including saffron, gardenia, and Buddleja. The biosynthesis of crocins in these plants has been unraveled, and the enzymes engineered for the production of crocins in heterologous systems. Mullein (Verbascum sp.

View Article and Find Full Text PDF

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant.

View Article and Find Full Text PDF

Background: The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial microRNAs (amiRNAs) are short RNAs that specifically silence target genes, but their use in plants has been limited by the need for long precursor molecules.
  • Researchers found that a shortened, 89-nucleotide version of a common precursor can effectively produce amiRNAs and induce gene silencing in plant models.
  • This discovery allows for the use of minimal amiRNA precursors delivered via viral vectors, enabling gene silencing in plants without the need for traditional transgenic methods.
View Article and Find Full Text PDF

Crocins are glycosylated apocarotenoids with strong coloring power and anti-oxidant, anticancer, and neuro-protective properties. We previously dissected the saffron crocin biosynthesis pathway, and demonstrated that the CsCCD2 enzyme, catalyzing the carotenoid cleavage step, shows a strong preference for the xanthophyll zeaxanthin in vitro and in bacterio. In order to investigate substrate specificity in planta and to establish a plant-based bio-factory system for crocin production, we compared wild-type plants, accumulating various xanthophylls together with α- and β-carotene, with genome-edited lines, in which all the xanthophylls normally accumulated in leaves were replaced by a single xanthophyll, zeaxanthin.

View Article and Find Full Text PDF

Recurrent disease outbreaks caused by different viruses, including the novel respiratory virus SARS-CoV-2, are challenging our society at a global scale; so versatile virus detection methods would enable a calculated and faster response. Here, we present a novel nucleic acid detection strategy based on CRISPR-Cas9, whose mode of action relies on strand displacement rather than on collateral catalysis, using the Cas9 nuclease. Given a preamplification process, a suitable molecular beacon interacts with the ternary CRISPR complex upon targeting to produce a fluorescent signal.

View Article and Find Full Text PDF

Viral vectors hold enormous potential for genome editing in plants as transient delivery vehicles of CRISPR-Cas components. Here, we describe a protocol to assemble plant viral vectors for single-guide RNA (sgRNA) delivery. The obtained viral constructs are based on compact T-DNA binary vectors of the pLX series and are delivered into Cas9-expressing plants through agroinoculation.

View Article and Find Full Text PDF

Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents.

View Article and Find Full Text PDF

A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth.

View Article and Find Full Text PDF

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd).

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-based transcriptional regulators can effectively induce gene expression in plants, influencing developmental traits like flowering time and biochemical composition.
  • Traditional delivery methods for CRISPR components typically use Agrobacterium tumefaciens, but virus-derived systems are emerging as an alternative, particularly for delivering guide RNA (gRNA).
  • This study showcases a Potato virus X-derived vector that enables precise gene activation in Nicotiana benthamiana, utilizing a non-invasive method that triggers strong, localized and systemic responses in target genes, resulting in unique metabolite profiles.
View Article and Find Full Text PDF

Viral infections in plants threaten food security. Thus, simple and effective methods for virus detection are required to adopt early measures that can prevent virus spread. However, current methods based on the amplification of the viral genome by polymerase chain reaction (PCR) require laboratory conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Recent developments in CRISPR-Cas technology are transforming targeted genome editing, particularly in plant science and crop breeding, moving away from traditional methods that can be labor-intensive and legally complicated.
  • One innovative approach involves using plant RNA viruses as vectors to deliver CRISPR components for a technique known as virus-induced genome editing (VIGE), which aims to simplify the editing process.
  • This review highlights progress in improving the VIGE toolbox, focusing on achieving direct editing in plants without tissue culture, and discusses how CRISPR can boost resistance against plant viruses by targeting viral genomes or altering host genes.
View Article and Find Full Text PDF

Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes.

View Article and Find Full Text PDF

Viral vectors provide a quick and effective way to express exogenous sequences in eukaryotic cells and to engineer eukaryotic genomes through the delivery of CRISPR/Cas components. Here, we present JoinTRV, an improved vector system based on tobacco rattle virus (TRV) that simplifies gene silencing and genome editing logistics. Our system consists of two mini T-DNA vectors from which TRV RNA1 (pLX-TRV1) and an engineered version of TRV RNA2 (pLX-TRV2) are expressed.

View Article and Find Full Text PDF

RNAi-based tools are widely used in gene function studies and for crop improvement. However, no effective methods for precisely controlling the degree of induced silencing have been reported until recently. Here we report a detailed protocol for designing and generating synthetic trans-acting small interfering RNA (syn-tasiRNA) constructs for fine-tuning gene expression in plants.

View Article and Find Full Text PDF

Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts.

View Article and Find Full Text PDF

Enrichment of foodstuffs with health-promoting metabolites such as carotenoids is a powerful tool to fight against unhealthy eating habits. Dietary carotenoids are vitamin A precursors and reduce risk of several chronical diseases. Additionally, carotenoids and their cleavage products (apocarotenoids) are used as natural pigments and flavors by the agrofood industry.

View Article and Find Full Text PDF

Background: Carotenoids are health-promoting metabolites in livestock and human diets. Some important crops have been genetically modified to increase their content. Although the usefulness of transgenic plants to alleviate nutritional deficiencies is obvious, their social acceptance has been controversial.

View Article and Find Full Text PDF