Publications by authors named "Jose Antonio Coca-Clemente"

The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium-sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization.

View Article and Find Full Text PDF

Introducing a small dose of an electrolyte additive into solid polymer electrolytes (SPEs) is an appealing strategy for improving the quality of the solid-electrolyte-interphase (SEI) layer formed on the lithium metal (Li°) anode, thereby extending the cycling life of solid-state lithium metal batteries (SSLMBs). In this work, we report a new type of SPEs comprising a low-cost, fluorine-free salt, lithium tricyanomethanide, as the main conducting salt and a fluorinated salt, lithium bis(fluorosulfonyl)imide (LiFSI), as the electrolyte additive for enhancing the performance of SPE-based SSLMBs. Our results demonstrate that a homogeneous and stable SEI layer is readily formed on the surface of the Li° electrode through the preferential reductive decomposition of LiFSI, and consequently, the cycle stabilities of Li°||Li° and Li°||LiFePO cells are significantly improved after the incorporation of LiFSI as an additive.

View Article and Find Full Text PDF