Publications by authors named "Jose Antonio Chavez"

The accumulation of fat in tissues not suited for lipid storage has deleterious consequences on organ function, leading to cellular damage that underlies diabetes, heart disease, and hypertension. To combat these lipotoxic events, several therapeutics improve insulin sensitivity and/or ameliorate features of metabolic disease by limiting the inappropriate deposition of fat in peripheral tissues (i.e.

View Article and Find Full Text PDF

Four recently discovered frozen child mummies from two of the highest peaks in the south central Andes now yield tantalizing evidence of the preparatory stages leading to Inca ritual killing as represented by the unique capacocha rite. Our interdisciplinary study examined hair from the mummies to obtain detailed genetic and diachronic isotopic information. This approach has allowed us to reconstruct aspects of individual identity and diet, make inferences concerning social background, and gain insight on the hitherto unknown processes by which victims were selected, elevated in social status, prepared for a high-altitude pilgrimage, and killed.

View Article and Find Full Text PDF

Recent studies indicate that insulin resistance and type 2 diabetes result from the accumulation of lipids in tissues not suited for fat storage, such as skeletal muscle and the liver. To elucidate the mechanisms linking exogenous fats to the inhibition of insulin action, we evaluated the effects of free fatty acids (FFAs) on insulin signal transduction in cultured C2C12 myotubes. As we described previously (Chavez, J.

View Article and Find Full Text PDF

Numerous extracellular stimuli activate SK1 (sphingosine kinase type 1) to catalyse the production of sphingosine 1-phosphate, a bioactive lipid that functions as both an extracellular ligand for a family of G-protein-linked receptors and as a putative intracellular messenger. Phorbol esters, calcium or immunoglobulin receptors stimulate SK1 by promoting its translocation to the plasma membrane, which brings it into proximity both to its substrate (i.e.

View Article and Find Full Text PDF

A strong correlation between intramyocellular lipid concentrations and the severity of insulin resistance has fueled speculation that lipid oversupply to skeletal muscle, fat, or liver may desensitize these tissues to the anabolic effects of insulin. To identify free fatty acids (FFAs) capable of inhibiting insulin action, we treated 3T3-L1 adipocytes or C2C12 myotubes with either the saturated FFA palmitate (C16:0) or the monounsaturated FFA oleate (C18:1), which were shown previously to be the most prevalent FFAs in rat soleus and gastrocnemius muscles. In C2C12 myotubes, palmitate, but not oleate, inhibited insulin-stimulation of glycogen synthesis, as well as its activation of Akt/Protein Kinase B (PKB), an obligate intermediate in the regulation of anabolic metabolism.

View Article and Find Full Text PDF

Multiple studies suggest that lipid oversupply to skeletal muscle contributes to the development of insulin resistance, perhaps by promoting the accumulation of lipid metabolites capable of inhibiting signal transduction. Herein we demonstrate that exposing muscle cells to particular saturated free fatty acids (FFAs), but not mono-unsaturated FFAs, inhibits insulin stimulation of Akt/protein kinase B, a serine/threonine kinase that is a central mediator of insulin-stimulated anabolic metabolism. These saturated FFAs concomitantly induced the accumulation of ceramide and diacylglycerol, two products of fatty acyl-CoA that have been shown to accumulate in insulin-resistant tissues and to inhibit early steps in insulin signaling.

View Article and Find Full Text PDF