The complexity of analysing data from IoT sensors requires the use of Big Data technologies, posing challenges such as data curation and data quality assessment. Not facing both aspects potentially can lead to erroneous decision-making (, processing incorrectly treated data, introducing errors into processes, causing damage or increasing costs). This article presents ELI, an IoT-based Big Data pipeline for developing a data curation process and assessing the usability of data collected by IoT sensors in both offline and online scenarios.
View Article and Find Full Text PDFIn this paper, we describe the use of homomorphic encryption techniques in order to not only ensure the data are transmitted in a confidential way, but also to use the encrypted data to provide the manager with statistics that allow them to detect the incorrect functioning of a sensor node or a group of sensors due to either malicious data injection, data transmission, or simply sensor damage (miscalibration, faulty sensor functioning). Obtaining these statistical values does not need decryption, so the process is sped up and can be developed in real time. Operating the data in this way ensures privacy and removes the need to maintain a shared key infrastructure between the sensor nodes and the manager nodes that are part of the blockchain infrastructure.
View Article and Find Full Text PDFThe research presented aims to investigate the relationship between privacy and anonymisation in blockchain technologies on different fields of application. The study is carried out through a systematic literature review in different databases, obtaining in a first phase of selection 199 publications, of which 28 were selected for data extraction. The results obtained provide a strong relationship between privacy and anonymisation in most of the fields of application of blockchain, as well as a description of the techniques used for this purpose, such as Ring Signature, homomorphic encryption, k-anonymity or data obfuscation.
View Article and Find Full Text PDFWith the deepening of the research and development in the field of embedded devices, the paradigm of the Internet of things (IoT) is gaining momentum. Its technology's widespread applications increasing the number of connected devices constantly. IoT is built on sensor networks, which are enabling a new variety of solutions for applications in several fields (health, industry, defense, agrifood and agro sectors, etc.
View Article and Find Full Text PDFThis work presents a microfluidic paper-based analytical device (μPAD) for glucose determination using a supported metal-organic framework (MOF) acting as a peroxidase mimic. The catalytic action of glucose oxidase (GOx) on glucose causes the formation of HO, and the MOF causes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HO to form a blue-green product with an absorption peak at 650 nm in the detection zone. A digital camera and the iOS feature of a smartphone are used for the quantitation of glucose with the S coordinate of the HSV color space as the analytical parameter.
View Article and Find Full Text PDFThe first sequencing of a complete genome was published forty years ago by the double Nobel Prize in Chemistry winner Frederick Sanger. That corresponded to the small sized genome of a bacteriophage, but since then there have been many complex organisms whose DNA have been sequenced. This was possible thanks to continuous advances in the fields of biochemistry and molecular genetics, but also in other areas such as nanotechnology and computing.
View Article and Find Full Text PDFWe present a new chemistry to determine nitrites implemented in a microfluidic paper-based analytical device (µPAD). The device is fabricated in cellulose paper with a sample reception area and three replicate detection areas with recognition chemistry immobilized by adsorption. The method involves the use of nitrite in an acid medium reaction to generate nitrous acid, which produces the oxidation of s-dihydrotetrazine: 1,2-dihydro-3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (DHBPTz), which change the detection zone from colorless to pink.
View Article and Find Full Text PDF