Publications by authors named "Jose Alberto Domingues Rodrigues"

One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLR). Increasing OLR can boost methane production but can also cause process failure. As a result, establishing the appropriate OLR for the procedure is critical.

View Article and Find Full Text PDF

Anaerobic digestion has emerged as the most appealing waste management strategy in biorefineries. Particularly, recent studies have highlighted the energy advantages of waste co-digestion in industrial biorefineries and the use of two-stage systems. However, there are some concerns about moving the system from laboratory testing to industrial scale.

View Article and Find Full Text PDF

Anaerobic digestion for CH recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L.

View Article and Find Full Text PDF

Stillage is an abundant wastewater from the sugarcane ethanol industry. It is rich in fermentable substrates and presents low-nutrient content, constituting a promising substrate for polyhydroxyalkanoate (PHA) production by mixed microbial cultures (MMC). This work assessed the enrichment of a PHA-accumulating MMC from acidified sugarcane stillage in a sequencing batch reactor under increasing organic loading rates (OLR) and no external nutrient supplementation.

View Article and Find Full Text PDF

This work used a pilot scale (with a total volume of 1300 L) Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR) to treat landfill leachate from São Carlos-SP (Brazil) as well as to evaluate the biomass growth and its behavior. Biomass from the bottom of a landfill leachate stabilization pond was immobilized in polyurethane foam cubes as inoculum. The leachate characteristics varied during the experiment.

View Article and Find Full Text PDF

Biogas upgrading processes by in-situ hydrogen (H) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H consumption and inhibition effect on the acetogenic steps.

View Article and Find Full Text PDF

This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.

View Article and Find Full Text PDF

Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase.

View Article and Find Full Text PDF

A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation.

View Article and Find Full Text PDF

A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (t(C)) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.

View Article and Find Full Text PDF

The objective of this work was to assess the effect of agitation rate and impeller type in two mechanically stirred sequencing batch reactors: one containing granulated biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam (denominated AnSBBR). Each configuration, with total volume of 1 m(3), treated 0.65 m(3) sanitary wastewater at ambient temperature in 8-h cycles.

View Article and Find Full Text PDF

Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature.

View Article and Find Full Text PDF

The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 degrees C, and treated with 2.

View Article and Find Full Text PDF

Safe application of the anaerobic sequencing biofilm batch reactor (ASBBR) still depends on deeper insight into its behavior when faced with common operational problems in wastewater treatments such as tolerance to abrupt variations in influent concentration, so called shock loads. To this end the current work shows the effect of organic shock loads on the performance of an ASBBR, with a useful volume of 5L, containing 0.5-cm polyurethane cubes and operating at 30 degrees C with mechanical stirring of 500 rpm.

View Article and Find Full Text PDF

The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L.

View Article and Find Full Text PDF

An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations.

View Article and Find Full Text PDF

The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.

View Article and Find Full Text PDF

This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters.

View Article and Find Full Text PDF

This work reports on the influence of the agitation rate on the organic matter degradation in an anaerobic sequencing batch reactor, containing biomass immobilized on 3 cm cubic polyurethane matrices, stirred mechanically and fed with partially soluble soymilk substrate with mean chemical oxygen demand (COD) of 974+/-70 mg l(-1). Hydrodynamic studies informed on the homogenization time under agitagion rates from 500 to 1100 rpm provided by three propeller impellers. It occurred very quickly compared to the total cycle time.

View Article and Find Full Text PDF

This work presents an analysis of a stirred anaerobic sequencing discontinuous reactor with different substrate feeding strategies resulting in batch, fed-batch/batch and fed-batch operating modes. The reactor, containing granulated biomass, was fed with approximately 2.0L of synthetic domestic wastewater with Chemical Oxygen Demand of nearly 500 mg/L per cycle and operated at 30 degrees C and 50 rpm.

View Article and Find Full Text PDF

The present work reports on the influence of feeding strategy on the stability and performance of a stirred anaerobic sequencing fed-batch reactor containing biomass immobilized on polyurethane foam. The reactor treated low-strength wastewater and was operated at 30 degrees C with an agitation rate of 200 rpm. A 180-min cycle was used to treat approximately 0.

View Article and Find Full Text PDF