Publications by authors named "Jose Abisambra"

Sleep timing and quantity disturbances persist in tauopathy patients. This has been studied in transgenic models of primary tau neuropathology using traditional electroencephalograms (EEGs) and more recently, the PiezoSleep Mouse Behavioral Tracking System. Here, we generated a primary tauopathy model using an intracerebroventricular injection of human mutant hSyn-P301L-tau, using adeno-associated virus of serotype 8 (AAV8).

View Article and Find Full Text PDF

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific symptoms and risk factors. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following TBIs. Repetitive mild TBIs (rmTBI) compound these issues, resulting in cumulative and long-term brain damage in the brain.

View Article and Find Full Text PDF

Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown.

View Article and Find Full Text PDF

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI).

View Article and Find Full Text PDF

Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown.

View Article and Find Full Text PDF

Metabolites, lipids, and glycans are fundamental biomolecules involved in complex biological systems. They are metabolically channeled through a myriad of pathways and molecular processes that define the physiology and pathology of an organism. Here, we present a blueprint for the simultaneous analysis of spatial metabolome, lipidome, and glycome from a single tissue section using mass spectrometry imaging.

View Article and Find Full Text PDF

Background: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF).

Methods And Results: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study.

View Article and Find Full Text PDF

Repetitive mild traumatic brain injuries (rmTBIs) are serious trauma events responsible for the development of numerous neurodegenerative disorders. A major challenge in developing diagnostics and treatments for the consequences of rmTBI is the fundamental knowledge gaps of the molecular mechanisms responsible for neurodegeneration. It is both critical and urgent to understand the neuropathological and functional consequences of rmTBI to develop effective therapeutic strategies.

View Article and Find Full Text PDF

Approximately 60-70 million people suffer from traumatic brain injury (TBI) each year. Animal models continue to be paramount in understanding mechanisms of cellular dysfunction and testing new treatments for TBI. Enhancing the translational potential of novel interventions therefore necessitates testing pre-clinical intervention strategies with clinically relevant cognitive assays.

View Article and Find Full Text PDF

Background: The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models.

View Article and Find Full Text PDF

The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis.

View Article and Find Full Text PDF

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors.

View Article and Find Full Text PDF

Tauopathies, including Alzheimer's disease, are characterized by progressive accumulation of hyperphosphorylated and pathologic tau protein in association with onset of cognitive and behavioral impairment. Tau pathology is also associated with increased susceptibility to seizures and epilepsy, with tau mice showing seizure resistance in some epilepsy models. To better understand how tau pathology is related to neuronal excitability, we performed whole-cell patch-clamp electrophysiology in dentate gyrus granule cells of tau and human-tau expressing, htau mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored.

View Article and Find Full Text PDF

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression.

View Article and Find Full Text PDF

A major challenge in neurobiology is the identification of the mechanisms by which protein misfolding leads to cellular toxicity. Many neurodegenerative disorders, in which aberrant protein conformers aggregate into pathological inclusions, present the chronic activation of the PERK branch of the unfolded protein response. The adaptive effects of the PERK pathway include reduction of translation by transient inhibition of eIF2α and antioxidant protein production via induction of Nrf2 transcription factor.

View Article and Find Full Text PDF

Frontotemporal dementias (FTDs) encompass several disorders commonly characterized by progressive frontotemporal lobar degeneration and dementia. Pathologically, TDP-43, FUS, dipeptide repeats, and tau constitute the protein aggregates in FTD, which in turn coincide with heterogeneity in clinical variants. The underlying molecular etiology explaining the formation of each type of protein aggregate remains unclear; however, dysregulated RNA metabolism rises as a common pathogenic factor.

View Article and Find Full Text PDF

In humans, the majority of sustained traumatic brain injuries (TBIs) are classified as 'mild' and most often a result of a closed head injury (CHI). The effects of a non-penetrating CHI are not benign and may lead to chronic pathology and behavioral dysfunction, which could be worsened by repeated head injury. Clinical-neuropathological correlation studies provide evidence that conversion of tau into abnormally phosphorylated proteotoxic intermediates (p-tau) could be part of the pathophysiology triggered by a single TBI and enhanced by repeated TBIs.

View Article and Find Full Text PDF

Impairments in translation have been increasingly implicated in the pathogenesis and progression of multiple neurodegenerative diseases. Assessing the spatiotemporal dynamics of translation in the context of disease is a major challenge. Recent developments in proteomic analyses have enabled the resolution of nascent peptides in a short timescale on the order of minutes.

View Article and Find Full Text PDF

There is a fundamental gap in understanding the consequences of tau-ribosome interactions. Tau oligomers and filaments hinder protein synthesis in vitro, and they associate strongly with ribosomes in vivo. Here, we investigated the consequences of tau interactions with ribosomes in transgenic mice, in cells, and in human brain tissues to identify tau as a direct modulator of ribosomal selectivity.

View Article and Find Full Text PDF

Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans.

View Article and Find Full Text PDF

Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models.

View Article and Find Full Text PDF

Systematic epistasis analyses in multifactorial disorders are an important step to better characterize complex genetic risk structures. We conducted a hypothesis-free sex-stratified genome-wide screening for epistasis contributing to Alzheimer's disease (AD) susceptibility. We identified a statistical epistasis signal between the single nucleotide polymorphisms rs3733980 and rs7175766 that was associated with AD in males (genome-wide significant p=0.

View Article and Find Full Text PDF

The development of insoluble, intracellular neurofibrillary tangles composed of the microtubule-associated protein tau is a defining feature of tauopathies, including Alzheimer's disease (AD). Accumulating evidence suggests that tau pathology co-localizes with RNA binding proteins (RBPs) that are known markers for stress granules (SGs). Here we used proteomics to determine how the network of tau binding proteins changes with disease in the rTg4510 mouse, and then followed up with immunohistochemistry to identify RNA binding proteins that co-localize with tau pathology.

View Article and Find Full Text PDF

Research into gene therapy for heart failure has gained renewed interest as a result of improved safety and availability of adeno-associated viral vectors (AAV). While magnetic resonance imaging (MRI) is standard for functional assessment of gene therapy outcomes, quantitation of gene transfer/expression relies upon tissue biopsy, fluorescence or nuclear imaging. Imaging of gene expression through the use of genetically encoded chemical exchange saturation transfer (CEST)-MRI reporter genes could be combined with clinical cardiac MRI methods to comprehensively probe therapeutic gene expression and subsequent outcomes.

View Article and Find Full Text PDF