Publications by authors named "Jose A Villadangos"

Conventional dendritic cells (cDC) are professional antigen-presenting cells able to prime naive T cells. Here, we present a protocol for ex vivo T cell priming by murine splenic cDC. We describe the steps of injecting fluorescently labeled antigens to mice, purifying antigen-bearing cDC, and priming antigen-specific T cells ex vivo.

View Article and Find Full Text PDF

Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1.

View Article and Find Full Text PDF

The development of dendritic cells (DCs) depends on signaling via the FMS-like tyrosine kinase 3 (Flt3) receptor. How Flt3 signaling impacts terminally differentiated DC function is unknown. This is important given the increasing interest in exploiting Flt3 for vaccination and tumor immunotherapy.

View Article and Find Full Text PDF

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors.

View Article and Find Full Text PDF

Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1.

View Article and Find Full Text PDF

Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined.

View Article and Find Full Text PDF

Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems.

View Article and Find Full Text PDF

Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs).

View Article and Find Full Text PDF

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts.

View Article and Find Full Text PDF

MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes.

View Article and Find Full Text PDF

Antigen (Ag)-presenting cells capture or synthesize Ags that are processed into peptides bound and displayed on the plasma membrane by major histocompatibility complex (MHC) molecules. Here, we review a mechanism that enables cells to present Ag-loaded MHC molecules that they have not produced themselves, namely trogocytosis. During trogocytosis, a cell acquires fragments from another living cell without, in most cases, affecting the viability of the donor cell.

View Article and Find Full Text PDF

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells).

Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression.

View Article and Find Full Text PDF

MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair.

View Article and Find Full Text PDF

Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s.

View Article and Find Full Text PDF

Transfusion is a specific cause of acute kidney injury (AKI) after cardiac surgery. Whether there is an association between the composition of blood products and the onset of AKI is unknown. The present study suggests that the transfusion of packed red blood cells containing a high amount of myeloid-related protein 14 (MRP_14) could increase the incidence of AKI after cardiac surgery.

View Article and Find Full Text PDF

MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase . Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates.

View Article and Find Full Text PDF

Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation.

View Article and Find Full Text PDF

The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells.

View Article and Find Full Text PDF

Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects.

View Article and Find Full Text PDF

Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs).

View Article and Find Full Text PDF

Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time.

View Article and Find Full Text PDF

MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T-cell receptor (TCR), which recognizes MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumor cells and appear to recognize MR1 in association with tumor-derived self-antigens, though the identity of these antigens remains unclear.

View Article and Find Full Text PDF