Background And Aims: Assessing adaptive genetic variation and its spatial distribution is crucial to conserve forest genetic resources and manage species' adaptive potential. Macro-environmental gradients commonly exert divergent selective pressures that enhance adaptive genetic divergence among populations. Steep micro-environmental variation might also result in adaptive divergence at finer spatial scales, even under high gene flow, but it is unclear how often this is the case.
View Article and Find Full Text PDFThis article comments on: Georgia L. Vasey, Alexandra K. Urza, Jeanne C.
View Article and Find Full Text PDFPremise: The possibility of fine-scale intraspecific adaptive divergence under gene flow is established by theoretical models and has been confirmed empirically in tree populations distributed along steep altitudinal clines or across extreme edaphic discontinuities. However, the possibility of microgeographic adaptive divergence due to less severe but more frequent kinds of soil variation is unclear.
Methods: In this study, we looked for evidence of local adaptation to calcareous versus siliceous soil types in two nearby Mediterranean Pinus sylvestris populations connected via pollen flow.
Improving our knowledge of how past climate-driven selection has acted on present-day trait population divergence is essential to understand local adaptation processes and improve our predictions of evolutionary trajectories in the face of altered selection pressures resulting from climate change. In this study, we investigated signals of selection on traits related to drought tolerance and growth rates in two Mediterranean oak species (Quercus faginea and Q. lusitanica) with contrasting distribution ranges and climatic niches.
View Article and Find Full Text PDFResource-use strategies are hypothesized to evolve along climatic gradients. However, our understanding of the environmental factors driving divergent evolution of resource-use strategies and the relationship between trait genetic variation and phenotypic plasticity is far from complete. Using the Mediterranean tree Quercus faginea as study system, we tested the hypothesis that a conservative resource-use strategy with increased drought tolerance and reduced phenotypic plasticity has evolved in areas with longer and more severe dry seasons.
View Article and Find Full Text PDFEarly-stage fitness variation has been seldom evaluated at broad scales in forest tree species, despite the long tradition of studying climate-driven intraspecific genetic variation. In this study, we evaluated the role of climate in driving patterns of population differentiation at early-life stages in Pinus sylvestris and explored the fitness and growth consequences of seed transfer within the species range. We monitored seedling emergence, survival and growth over a 2-yr period in a multi-site common garden experiment which included 18 European populations and spanned 25° in latitude and 1700 m in elevation.
View Article and Find Full Text PDFBackground: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.
Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth.
Understanding the dynamics of selection is key to predicting the response of tree species to new environmental conditions in the current context of climate change. However, selection patterns acting on early recruitment stages and their climatic drivers remain largely unknown in most tree species, despite being a critical period of their life cycle. We measured phenotypic selection on Pinus sylvestris seed mass, emergence time and early growth rate over 2 yr in four common garden experiments established along the latitudinal gradient of the species in Europe.
View Article and Find Full Text PDFGiven that the ecological niche of tree species is typically narrower for earlier life stages, intraspecific genetic variation at early fitness traits may greatly influence the adaptive response of tree populations to changing environmental conditions. In this study, we evaluated genetic variation in early fitness traits among 12 populations of from a wide latitudinal range in Europe (41-55°N). We first conducted a chamber experiment to test for population differences in germination and the effect of pre-chilling treatment on seed dormancy release.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations.
View Article and Find Full Text PDFIt is hypothesised that tree distributions in Europe are largely limited by their ability to cope with the summer drought imposed by the Mediterranean climate in the southern areas and by their competitive potential in central regions with more mesic conditions. We investigated the extent to which leaf and plant morphology, gas exchange, leaf and stem hydraulics and growth rates have evolved in a coordinated way in oaks (Quercus) as a result of adaptation to contrasting environmental conditions in this region. We implemented an experiment in which seedlings of 12 European/North African oaks were grown under two watering treatments, a well-watered treatment and a drought treatment in which plants were subjected to three cycles of drought.
View Article and Find Full Text PDFHeritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect.
View Article and Find Full Text PDFThe impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used Q -F comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence.
View Article and Find Full Text PDFWidely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions.
View Article and Find Full Text PDFIn seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted.
View Article and Find Full Text PDFClimate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking.
View Article and Find Full Text PDFHuman-induced gene movement via afforestation and restoration programs is a widespread phenomenon throughout the world. However, its effects on the genetic composition of native populations have received relatively little attention, particularly in forest trees. Here, we examine to what extent gene flow from allochthonous plantations of Pinus pinaster Aiton impacts offspring performance in a neighboring relict natural population and discuss the potential consequences for the long-term genetic composition of the latter.
View Article and Find Full Text PDFPlants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity.
View Article and Find Full Text PDF