Plants (Basel)
June 2024
Water deficiency has been recognized as a major abiotic stress that causes losses in maize crops around the world. The maize crop is very important due to the range of products that are derived from this plant. A potential way to reduce the damages caused by water deficiency in maize crops is through the association with plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF).
View Article and Find Full Text PDFPlanta
June 2024
Deforestation of Atlantic Forest has caused prolonged drought events in the last decades. The need for reforestation is growing, and the development of native seedlings that are more tolerant to drought stress is necessary. A biotechnological tool that improves plant tolerance is the use of plant growth-promoting bacteria (PGPB) as inoculants.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2021
Despite the important role played by nitric oxide (NO) in plants subjected to abiotic stress, NO donors application to induce drought tolerance in neotropical tree seedlings has not yet been tested. It is also worth investigating whether NO bioactivity in drought-stressed seedlings could be potentiated by NO donors nanoencapsulation. The aim of the current study is to evaluate the effects of chitosan nanoparticles (NPs) containing S-nitroso-mercaptosuccinic acid (S-nitroso-MSA) on drought-stressed seedlings of neotropical tree species Heliocarpus popayanensis Kunth in comparison to free NO donor and NPs loaded with non-nitrosated MSA.
View Article and Find Full Text PDFPlant growth-promoting bacteria association improved the enzymatic and non-enzymatic antioxidant pathways in Neotropical trees under drought, which led to lower oxidative damage and enhanced drought tolerance in these trees. Water deficit is associated with oxidative stress in plant cells and may, thus, negatively affect the establishment of tree seedlings in reforestation areas. The association with plant growth-promoting bacteria (PGPB) is known to enhance the antioxidant response of crops, but this strategy has not been tested in seedlings of Neotropical trees.
View Article and Find Full Text PDFPolymeric nanoparticles have emerged as carrier systems for molecules that release nitric oxide (NO), a free radical involved in plant stress responses. However, to date, nanoencapsulated NO donors have not been applied to plants under realistic field conditions. Here, we verified the effects of free and nanoencapsulated NO donor, S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), on growth, physiological and biochemical parameters of neotropical tree seedlings kept under full sunlight in the nursery for acclimation.
View Article and Find Full Text PDFThe inoculation of tree species with plant growth-promoting bacteria (PGPB) has emerged as an important strategy for the acclimation of seedlings by improving plant tolerance to biotic and abiotic stresses. This study aimed to evaluate the effects of inoculation with bacterial species (Azospirillum brasilense - Ab-V5, Bacillus sp., Azomonas sp.
View Article and Find Full Text PDFFew studies have analyzed the strategies of neotropical tree seedlings for absorbing, translocating and assimilating the nitrogen. Here, we compared the nitrogen use strategies of seedlings from six tree species that are native to the Brazilian Atlantic Forest and that belong to different successional groups: Trema micrantha, Heliocarpus popayanensis and Cecropia pachystachya (pioneers), Cariniana estrellensis, Eugenia brasiliensis and Guarea kunthiana (non-pioneers). The effects of cultivating seedlings with nitrate or ammonium on the growth, physiology and nitrogen metabolism were analyzed.
View Article and Find Full Text PDFSize structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg.
View Article and Find Full Text PDF