Background: Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way.
View Article and Find Full Text PDFTrichomonas vaginalis (Tv) is a parasite that causes trichomoniasis, a prevalent sexually-transmitted infection. Neutrophils are found at the site of infection, and can rapidly kill the parasite in vitro, using trogocytosis. However, the specific molecular players in neutrophil killing of Tv are unknown.
View Article and Find Full Text PDFThe weeks following HIV acquisition are a critical time when the virus causes significant immunological damage and establishes long-term latent reservoirs. A recent study in Immunity by Gantner et al. uses single-cell analysis to explore these key early infection events, providing insights into early HIV pathogenesis and reservoir formation.
View Article and Find Full Text PDFHIV can establish a long-lived latent infection in cells harboring integrated non-expressing proviruses. Latency reversing agents (LRAs), including protein kinase C (PKC) modulators, can induce expression of latent HIV, thereby reducing the latent reservoir in animal models. However, PKC modulators such as bryostatin-1 also cause cytokine upregulation in peripheral blood mononuclear cells (PBMCs), including cytokines that might independently reverse HIV latency.
View Article and Find Full Text PDFApproximately 38 million people were living with human immunodeficiency virus (HIV) in 2020 and 53% of those infected were female. A variety of virological and immunological sex-associated differences (sexual dimorphism) in HIV infection have been recognized in males versus females. Social, behavioral, and societal influences play an important role in how the HIV pandemic has affected men and women differently.
View Article and Find Full Text PDFHuman adipogenesis is the process through which uncommitted human mesenchymal stem cells (hMSCs) differentiate into adipocytes. Through a -based high-throughput screen that identifies adipogenic regulators whose expression knockdown leads to enhanced adipogenic differentiation of hMSCs, two new regulators, SUV39H1, a histone methyltransferase that catalyzes H3K9Me3, and CITED2, a CBP/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 were uncovered. Both SUV39H1 and CITED2 are normally downregulated during adipogenic differentiation of hMSCs.
View Article and Find Full Text PDFTrichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, (). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes.
View Article and Find Full Text PDF