The gas-phase enthalpy of formation of cubane (603.4 ± 4 kJ mol(-1)) was calculated using an explicitly correlated composite method (W1-F12). The result obtained for cubane, together with the experimental value for the enthalpy of sublimation, 54.
View Article and Find Full Text PDFThe gas-phase enthalpies of formation for a set of ortho-substituted alkylbenzenes were obtained from CCSD(T*)-F12 and W1-F12 calculations. Most values are in keeping with available experimental data. The gas-phase enthalpies of formation of 1-ethyl-2-propylbenzene, 1-ethyl-2-isopropylbenzene, 1,2-diisopropylbenzene, 1,2,4-triethylbenzene, and 1,2,4,5-tetraethylbenzene, for which no experimental data are available, were determined as -46.
View Article and Find Full Text PDFThe energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes.
View Article and Find Full Text PDFThe gas-phase acidities of the six dimethylphenol isomers were determined experimentally, by using the kinetic method, and theoretically, through quantum chemistry calculations. The experimental values, relative to the gas-phase acidity of phenol, are (in kJ mol(-1)): -1.76+/-0.
View Article and Find Full Text PDFGas-phase C-H bond dissociation enthalpies (BDEs) in norbornane were determined by quantum chemistry calculations and the C2-H BDE was experimentally obtained for the first time by time-resolved photoacoustic calorimetry. CBS-Q and CBS-QB3 methods were used to derive the values DH degrees (C1-H) = 449 kJ mol-1, DH degrees (C7-H) = 439 kJ mol-1, and DH degrees (C2-H) = 413 kJ mol-1. The experimental result DH degrees (C2-H) = 414.
View Article and Find Full Text PDFAiming to improve our understanding of the stability of radicals containing the allylic moiety, carbon-hydrogen bond dissociation enthalpies (BDEs) in propene, isobutene, 1-butene, (E)-2-butene, 3-metylbut-1-ene, (E)-2-pentene, (E)-1,3-pentadiene, 1,4-pentadiene, cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have been determined by quantum chemistry calculations. The BDEs in cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have also been obtained by time-resolved photoacoustic calorimetry. The theoretical study involved a DFT method as well as ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)).
View Article and Find Full Text PDFThe energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.
View Article and Find Full Text PDFThe gas-phase C-H bond dissociation enthalpy (BDE) in 1,3-cyclopentadiene has been determined by time-resolved photoacoustic calorimetry (TR-PAC) as 358 +/- 7 kJ mol(-1). Theoretical results from ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)) are reported. The CCSD(T) prediction for the C-H BDE of 1,3-cyclopentadiene (353.
View Article and Find Full Text PDFThe demand for novel effective antioxidant-based drugs has led to the synthesis and evaluation of the antioxidant potential in several molecules derived from natural compounds. In this work the in vitro antioxidant activity of an abietic acid-derived catechol (methyl 11,12-dihydroxyabietate-8,11,13-trien-18-oate, MDTO) was evaluated. This substance, possessing important biological properties, is similar to carnosic acid, a natural antioxidant from rosemary or sage leaves.
View Article and Find Full Text PDF