Publications by authors named "Jose A Jaramillo-Villegas"

Researchers in biomedical research, public health and the life sciences often spend weeks or months discovering, accessing, curating, and integrating data from disparate sources, significantly delaying the onset of actual analysis and innovation. Instead of countless developers creating redundant and inconsistent data pipelines, BioBricks.ai offers a centralized data repository and a suite of developer-friendly tools to simplify access to scientific data.

View Article and Find Full Text PDF

We present a method to deterministically obtain broad bandwidth frequency combs in microresonators. These broadband frequency combs correspond to cnoidal waves in the limit when they can be considered soliton crystals or single solitons. The method relies on moving adiabatically through the (frequency detuning)×(pump amplitude) parameter space, while avoiding the chaotic regime.

View Article and Find Full Text PDF

We report phase retrieval of a single-soliton Kerr comb using electric field cross-correlation implemented via dual-comb interferometry. The phase profile of the Kerr comb is acquired through the heterodyne beat between the Kerr comb and an electro-optic comb with a pre-characterized phase profile. The soliton Kerr comb has a nearly flat phase profile, and the pump line is observed to show a phase offset which depends on the pumping parameters.

View Article and Find Full Text PDF

Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation.

View Article and Find Full Text PDF

We investigate, numerically and experimentally, the effect of thermo-optical (TO) chaos on soliton generation dynamics in microresonators. Numerical simulations that include the thermal dynamics show that the generated solitons can either survive or annihilate when the pump laser is scanned from blue to red and then stop at a fixed wavelength; the outcome is stochastic and is strongly related to the number of solitons generated. The random fluctuations of the cavity resonance occurring under TO chaos are also found to trigger delayed spontaneous soliton generation after the laser scan ends, which could enable soliton excitation with slow laser tuning speed.

View Article and Find Full Text PDF

Kerr nonlinearity-based frequency combs and solitons have been generated from on-chip microresonators. The initiation of the combs requires global or local anomalous dispersion which leads to many limitations, such as material choice, film thickness, and spectral ranges where combs can be generated, as well as fabrication challenges. Using a concentric racetrack-shaped resonator, we show that such constraints can be lifted and resonator dispersion can be engineered to be anomalous over moderately broad bandwidth.

View Article and Find Full Text PDF

Simultaneous Kerr comb formation and second-harmonic generation with on-chip microresonators can greatly facilitate comb self-referencing for optical clocks and frequency metrology. Moreover, the presence of both second- and third-order nonlinearities results in complex cavity dynamics that is of high scientific interest but is still far from being well-understood. Here, we demonstrate that the interaction between the fundamental and the second-harmonic waves can provide an entirely new way of phase matching for four-wave mixing in optical microresonators, enabling the generation of optical frequency combs in the normal dispersion regime under conditions where comb creation is ordinarily prohibited.

View Article and Find Full Text PDF

The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity.

View Article and Find Full Text PDF

We present a 32 channel indium phosphide integrated pulse shaper with 25 GHz channel spacing, where each channel is equipped with a semiconductor optical amplifier allowing for programmable line-by-line gain control with submicrosecond reconfigurability. We critically test the integrated pulse shaper by using it in comb-based RF-photonic filtering experiments where the precise gain control is leveraged to synthesize high-fidelity RF filters which we reconfigure on a microsecond time scale. Our on-chip pulse shaping demonstration is unmatched in its combination of speed, fidelity, and flexibility, and will likely open new avenues in the field of advanced broadband signal generation and processing.

View Article and Find Full Text PDF

We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings.

View Article and Find Full Text PDF

Soliton formation in on-chip micro-comb generation balances cavity dispersion and nonlinearity and allows coherent, low-noise comb operation. We study the intracavity waveform of an on-chip microcavity soliton in a silicon nitride microresonator configured with a drop port. Whereas combs measured at the through port are accompanied by a very strong pump line which accounts for >99% of the output power, our experiments reveal that inside the microcavity, most of the power is in the soliton.

View Article and Find Full Text PDF

We propose and demonstrate a novel approach for controlling the temporal position of the biphoton correlation function using pump frequency tuning and dispersion cancellation; precise waveguide engineering enables biphoton generation at different pump frequencies while the idea of nonlocal dispersion cancellation is used to create the relative signal-idler delay and simultaneously prevents broadening of their correlation. Experimental results for delay shifts up to ±15 times the correlation width are shown along with discussions of the performance metrics of this approach.

View Article and Find Full Text PDF

A path within the parameter space of detuning and pump power is demonstrated in order to obtain a single cavity soliton (CS) with certainty in SiN microring resonators in the anomalous dispersion regime. Once the single CS state is reached, it is possible to continue a path to compress it, broadening the corresponding single free spectral range (FSR) Kerr frequency comb. The first step to achieve this goal is to identify the stable regions in the parameter space via numerical simulations of the Lugiato-Lefever equation (LLE).

View Article and Find Full Text PDF