Publications by authors named "Jose A Gutierrez-Barranquero"

Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model rhizobacterium used to study beneficial bacterial interactions with the plant rhizosphere. Many of its beneficial phenotypes depend on the production of the antifungal compound 2-hexyl, 5-propyl resorcinol (HPR). Transcriptomic analysis of PcPCL1606 and the deletional mutant in HPR production ΔdarB strain, assigned an additional regulatory role to HPR, and allowed the detection of differentially expressed genes during the bacterial interaction with the avocado rhizosphere.

View Article and Find Full Text PDF

(Pc) representatives are found as part of the rhizosphere-associated microbiome, and different rhizospheric Pc strains frequently perform beneficial activities for the plant. In this study we described the interactions between the rhizospheric Pc strains PCL1601, PCL1606 and PCL1607 with a focus on their effects on root performance. Differences among the three rhizospheric Pc strains selected were first observed in phylogenetic studies and confirmed by genome analysis, which showed variation in the presence of genes related to antifungal compounds or siderophore production, among others.

View Article and Find Full Text PDF

The rhizobacterium AVO110 exhibits antagonism toward the phytopathogenic fungus . This strain efficiently colonizes hyphae and is able to feed on their exudates. Here, we report the complete genome sequence of AVO110.

View Article and Find Full Text PDF

The formation of biofilms results from a multicellular mode of growth, in which bacteria remain enwrapped by an extracellular matrix of their own production. Many different bacteria form biofilms, but among the most studied species are those that belong to the genus due to the metabolic versatility, ubiquity, and ecological significance of members of this group of microorganisms. Within the genus, biofilm studies have mainly focused on the opportunistic human pathogen due to its clinical importance.

View Article and Find Full Text PDF

Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP).

View Article and Find Full Text PDF

Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation.

View Article and Find Full Text PDF

Pseudomonas syringae is a phytopathogenic model bacterium that is used worldwide to study plant-bacteria interactions and biofilm formation in association with a plant host. Within this species, the syringae pathovar is the most studied due to its wide host range, affecting both, woody and herbaceous plants. In particular, Pseudomonas syringae pv.

View Article and Find Full Text PDF

Three sp. strains isolated from marine sponges have shown potential quorum sensing inhibition (QSI) activity. We sequenced the draft genomes of the three strains with the goal of determining which genes or gene cluster(s) could be potentially involved in the QSI activity.

View Article and Find Full Text PDF

Despite the discovery of the first -acyl homoserine lactone (AHL) based quorum sensing (QS) in the marine environment, relatively little is known about the abundance, nature and diversity of AHL QS systems in this diverse ecosystem. Establishing the prevalence and diversity of AHL QS systems and how they may influence population dynamics within the marine ecosystem, may give a greater insight into the evolution of AHLs as signaling molecules in this important and largely unexplored niche. Microbiome profiling of and BD1268 sponge samples identified several potential QS active genera.

View Article and Find Full Text PDF

The complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of have been described based on distinct host ranges and disease symptoms they cause.

View Article and Find Full Text PDF

The draft genome sequence of sp. strain JM45, isolated from a marine sponge harvested off the west coast of Ireland, is reported here. Quorum sensing and quorum sensing inhibition activities have been reported recently for this bacterium, and genomic analysis supports its potential use for novel therapeutic development.

View Article and Find Full Text PDF

Bacterial apical necrosis of mango trees, a disease elicited by Pseudomonas syringae pv. syringae, is a primary limiting factor of mango crop production in the Mediterranean region. In this study, a collection of bacterial isolates associated with necrotic symptoms in mango trees similar to those produced by bacterial apical necrosis disease were isolated over five consecutive years in orchards from the Canary Islands.

View Article and Find Full Text PDF

Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and clinical management of microbial infections.

View Article and Find Full Text PDF

In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel bioactivities. One such area of ongoing research is the discovery of compounds that interfere with the cell-cell signalling process called quorum sensing (QS).

View Article and Find Full Text PDF

Background: The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces.

View Article and Find Full Text PDF

The advent of metagenomics based biodiscovery has provided researchers with previously unforeseen access to the rich tapestry of natural bioactivity that exists in the biosphere. Unhindered by the "culturable bottleneck" that has severely limited the translation of the genetic potential that undoubtedly exists in nature, metagenomics nonetheless requires ongoing technological developments to maximize its efficacy and applicability to the discovery of new chemical entities.Here we describe methodologies for the detection and isolation of quorum sensing (QS) signal molecules from metagenomics libraries.

View Article and Find Full Text PDF

In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities.

View Article and Find Full Text PDF

Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon.

View Article and Find Full Text PDF

The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology.

View Article and Find Full Text PDF

The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens.

View Article and Find Full Text PDF

Background: The antimetabolite mangotoxin is a key factor in virulence of Pseudomonas syringae pv. syringae strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is governed by the mbo operon.

View Article and Find Full Text PDF

Pseudomonas syringae pv. syringae, the causal agent of bacterial apical necrosis (BAN) in mango crops, has been isolated in different mango-producing areas worldwide. An extensive collection of 87 P.

View Article and Find Full Text PDF