We extend state-to-state chemistry to a realm where besides vibrational, rotational, and hyperfine quantum states magnetic quantum numbers are also resolved. For this, we make use of the Zeeman effect, which energetically splits levels of different magnetic quantum numbers. The chemical reaction which we choose to study is three-body recombination in an ultracold quantum gas of ^{87}Rb atoms forming weakly bound Rb_{2} molecules.
View Article and Find Full Text PDFExperimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck's constant.
View Article and Find Full Text PDF