Machine learning techniques, particularly deep convolutional neural networks (ConvNets), are increasingly being used to automate clinical EEG analysis, with the potential to reduce the clinical burden and improve patient care. However, further research is required before they can be used in clinical settings, particularly regarding the impact of the number of training samples and model parameters on their testing error. To address this, we present a comprehensive study of the empirical scaling behaviour of ConvNets for EEG pathology classification.
View Article and Find Full Text PDFAutomated clinical EEG analysis using machine learning (ML) methods is a growing EEG research area. Previous studies on binary EEG pathology decoding have mainly used the Temple University Hospital (TUH) Abnormal EEG Corpus (TUAB) which contains approximately 3,000 manually labelled EEG recordings. To evaluate and eventually even improve the generalisation performance of machine learning methods for EEG pathology, decoding larger, publicly available datasets is required.
View Article and Find Full Text PDFBackground: Deep neural networks learn from former experiences on a large scale and can be used to predict future disease activity as potential clinical decision support. AdaptiveNet is a novel adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical data.
Objective: We investigate AdaptiveNet for the prediction of individual disease activity in patients from a rheumatoid arthritis (RA) registry.
Machine learning (ML) methods have the potential to automate clinical EEG analysis. They can be categorized into feature-based (with handcrafted features), and end-to-end approaches (with learned features). Previous studies on EEG pathology decoding have typically analyzed a limited number of features, decoders, or both.
View Article and Find Full Text PDFRheumatol Adv Pract
February 2020
Machine learning as a field of artificial intelligence is increasingly applied in medicine to assist patients and physicians. Growing datasets provide a sound basis with which to apply machine learning methods that learn from previous experiences. This review explains the basics of machine learning and its subfields of supervised learning, unsupervised learning, reinforcement learning and deep learning.
View Article and Find Full Text PDFAppropriate robot behavior during human-robot interaction is a key part in the development of human-compliant assistive robotic systems. This study poses the question of how to continuously evaluate the quality of robotic behavior in a hybrid brain-computer interfacing (BCI) task, combining brain and non-brain signals, and how to use the collected information to adapt the robot's behavior accordingly. To this aim, we developed a rating system compatible with EEG recordings, requiring the users to execute only small movements with their thumb on a wireless controller to rate the robot's behavior on a continuous scale.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
We present for the first time a μW-power convolutional neural network for seizure detection running on a low-power microcontroller. On a dataset of 22 patients a median sensitivity of 100% is achieved. With a false positive rate of 20.
View Article and Find Full Text PDFDriven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits.
View Article and Find Full Text PDFA common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity.
View Article and Find Full Text PDFWe investigate information processing in randomly connected recurrent neural networks. It has been shown previously that the computational capabilities of these networks are maximized when the recurrent layer is close to the border between a stable and an unstable dynamics regime, the so called edge of chaos. The reasons, however, for this maximized performance are not completely understood.
View Article and Find Full Text PDFReservoir computing (RC) is a recent paradigm in the field of recurrent neural networks. Networks in RC have a sparsely and randomly connected fixed hidden layer, and only output connections are trained. RC networks have recently received increased attention as a mathematical model for generic neural microcircuits to investigate and explain computations in neocortical columns.
View Article and Find Full Text PDF