Publications by authors named "Jos van der Tol"

This study presents the design, fabrication and experimental demonstration of a magneto-photonic device that delivers non-volatile photonic memory functionality. The aim is to overcome the energy and speed bottleneck of back-and-forth signal conversion between the electronic and optical domains when retrieving information from non-volatile memory. The device combines integrated photonic components based on the InP membrane on silicon (IMOS) platform and a non-volatile, built-in memory element (ferromagnetic thin-film multilayers) realized as a top-cladding on the photonic waveguides (a post-processing step).

View Article and Find Full Text PDF

In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators.

View Article and Find Full Text PDF

We report the fabrication and characterization of a new polarization converter for InGaAsP-InP photonic integrated circuits. The converter consists of two right trapezoidal sections with the angled sidewalls etched wetly. The converters show a greatly improved tolerance to variations of the fabrication, an averaged efficiency of polarization conversion of 99.

View Article and Find Full Text PDF

We show an improved fabrication process of trapezoidal polarization converters for InP-based photonic integrated circuits. The new process has reduced complexity, and the fabricated converters have loss two times lower than reported previously. The measurements of the converters show an efficiency of polarization conversion of 97.

View Article and Find Full Text PDF

An ultrasmall (<10  μm length) polarization converter in InP membrane is fabricated and characterized. The device relies on the beating between the two eigenmodes of chemically etched triangular waveguides. Measurements show a very high polarization conversion efficiency of >99% with insertion losses of <-1.

View Article and Find Full Text PDF