Publications by authors named "Jos van Rijssel"

Article Synopsis
  • Atherosclerotic plaques' destabilization is linked to the presence of specific microvessels, which might be leaky, although evidence is still needed.
  • This study aimed to find key molecular drivers of dysfunction in these vessels by analyzing transcriptome data from human atherosclerotic lesions and identifying crucial genes related to microvascular density and inflammation.
  • The research highlighted Spectrin Beta Non-Erythrocytic 1 (sptbn1) as a central gene that, when silenced, increased vascular permeability and inflammation, suggesting it plays a significant role in regulating the leaky characteristics of plaque microvessels related to cardiovascular disease.
View Article and Find Full Text PDF

Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton.

View Article and Find Full Text PDF

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration.

View Article and Find Full Text PDF

An inflammatory response requires leukocytes to migrate from the circulation across the vascular lining into the tissue to clear the invading pathogen. Whereas a lot of attention is focused on how leukocytes make their way through the endothelial monolayer, it is less clear how leukocytes migrate underneath the endothelium before they enter the tissue. Upon finalization of the diapedesis step, leukocytes reside in the subendothelial space and encounter endothelial focal adhesions.

View Article and Find Full Text PDF

Bone marrow endothelium plays an important role in the homing of hematopoietic stem and progenitor cells upon transplantation, but surprisingly little is known on how the bone marrow endothelial cells regulate local permeability and hematopoietic stem and progenitor cells transmigration. We show that temporal loss of vascular endothelial-cadherin function promotes vascular permeability in BM, even upon low-dose irradiation. Loss of vascular endothelial-cadherin function also enhances homing of transplanted hematopoietic stem and progenitor cells to the bone marrow of irradiated mice although engraftment is not increased.

View Article and Find Full Text PDF

Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries.

View Article and Find Full Text PDF

Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520).

View Article and Find Full Text PDF

Growing evidence indicate that large antigen-containing particles induce potent T cell-dependent high-affinity antibody responses. These responses require large particle internalization after recognition by the B cell receptor (BCR) on B cells. However, the molecular mechanisms governing BCR-mediated internalization remain unclear.

View Article and Find Full Text PDF

Leukocytes follow the well-defined steps of rolling, spreading, and crawling prior to diapedesis through endothelial cells (ECs). We found increased expression of DLC-1 in stiffness-associated diseases like atherosclerosis and pulmonary arterial hypertension. Depletion of DLC-1 in ECs cultured on stiff substrates drastically reduced cell stiffness and mimicked leukocyte transmigration kinetics observed for ECs cultured on soft substrates.

View Article and Find Full Text PDF

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells.

View Article and Find Full Text PDF

Leukocyte transendothelial migration is key to inflammation. Leukocytes first start rolling over the inflamed endothelium, followed by firmly adhering to it. Under inflammatory conditions, endothelial cells express small finger-like protrusions that stick out into the lumen.

View Article and Find Full Text PDF

Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order for endothelial cells to align, they undergo rapid remodeling of the actin cytoskeleton by local activation of the small GTPase Rac1.

View Article and Find Full Text PDF

ICAM-1 is required for firm adhesion of leukocytes to the endothelium. However, how the spatial organization of endothelial ICAM-1 regulates leukocyte adhesion is not well understood. In this study, we identified the calcium-effector protein annexin A2 as a novel binding partner for ICAM-1.

View Article and Find Full Text PDF

During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling.

View Article and Find Full Text PDF

Endothelial cell-cell junctions maintain a restrictive barrier that is tightly regulated to allow dynamic responses to permeability-inducing angiogenic factors, as well as to inflammatory agents and adherent leukocytes. The ability of these stimuli to transiently remodel adherens junctions depends on Rho-GTPase-controlled cytoskeletal rearrangements. How the activity of Rho-GTPases is spatio-temporally controlled at endothelial adherens junctions by guanine-nucleotide exchange factors (GEFs) is incompletely understood.

View Article and Find Full Text PDF

We studied spontaneously self-assembled aggregates in a suspension of CdSe/CdS core/shell nanorods (NRs). The influence of the length and concentration of the NRs and the suspension temperature on the size of the aggregates was investigated using in situ small-angle X-ray scattering (SAXS) and linear dichroism (LD) measurements under high magnetic fields (up to 30 T). The SAXS patterns reveal the existence of crystalline 2-dimensional sheets of ordered NRs with an unusually large distance between the rods.

View Article and Find Full Text PDF

The 3D distribution of nanocrystals at the liquid-air interface is imaged for the first time on a single-particle level by cryogenic electron tomography, revealing the equilibrium concentration profile from the interface to the bulk of the liquid. When the surface tension of the liquid is decreased, the interaction of the nanocrystals with the liquid-air interface shifts from adsorption to desorption. Macroscopic surface tension measurements do not detect this transition, due to the presence of surface-active molecular species.

View Article and Find Full Text PDF

Leukocyte transendothelial migration (TEM) is one of the crucial steps during inflammation. A better understanding of the key molecules that regulate leukocyte extravasation aids to the development of novel therapeutics for treatment of inflammation-based diseases, such as atherosclerosis and rheumatoid arthritis. The adhesion molecules ICAM-1 and VCAM-1 are known as central mediators of TEM.

View Article and Find Full Text PDF

Inflammation is characterized by endothelium that highly expresses numerous adhesion molecules to trigger leukocyte extravasation. Central to this event is increased gene transcription. Small Rho-GTPases not only control the actin cytoskeleton, but are also implicated in gene regulation.

View Article and Find Full Text PDF

Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange.

View Article and Find Full Text PDF

A general organometallic route has been developed to synthesize Co(x)Ni(1-x) and Co(x)Fe(1-x) alloy nanoparticles with a fully tunable composition and a size of 4-10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co(2)(CO)(8)), here the cobalt-cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys.

View Article and Find Full Text PDF

Leukocyte transendothelial migration involves the active participation of the endothelium through the formation of apical membrane protrusions that embrace adherent leukocytes, termed docking structures. Using live-cell imaging, we find that prior to transmigration, endothelial docking structures form around 80% of all neutrophils. Previously we showed that endothelial RhoG and SGEF control leukocyte transmigration.

View Article and Find Full Text PDF

The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1, RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates Rac1 and RhoG independently from each other.

View Article and Find Full Text PDF

The optical properties of PbSe/CdSe core/shell quantum dots with core sizes smaller than 4 nm in the 5-300 K range are reported. The photoluminescence spectra show two peaks, which become increasingly separated in energy as the core diameter is reduced below 4 nm. It is shown that these peaks are due to intrinsic exciton transitions in each quantum dot, rather than emission from different quantum dot sub-ensembles.

View Article and Find Full Text PDF