In both diurnal and nocturnal species, the neurons in the suprachiasmatic nucleus (SCN) generate a daily pattern in which the impulse frequency peaks at midday and is lowest during the night. This pattern, common to both day-active and night-active species, has led to the long-standing notion that their functional difference relies merely on a sign reversal in SCN output. However, recent evidence shows that the response of the SCN to the animal's physical activity is opposite in nocturnal and diurnal animals.
View Article and Find Full Text PDFEveningness has been associated with both disturbed sleep and depression. It is unclear, however, if deprived sleep explains evening types' vulnerability to depression. The role of pre-sleep rumination in these associations also remains understudied.
View Article and Find Full Text PDFA robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases.
View Article and Find Full Text PDFMultiple choice questions (MCQs) offer high reliability and easy machine-marking, but allow for cueing and stimulate recognition-based learning. Very short answer questions (VSAQs), which are open-ended questions requiring a very short answer, may circumvent these limitations. Although VSAQ use in medical assessment increases, almost all research on reliability and validity of VSAQs in medical education has been performed by a single research group with extensive experience in the development of VSAQs.
View Article and Find Full Text PDFThe mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and consists of a network of coupled neurons, which are entrained to the environmental light-dark cycle. The phase coherence of the neurons is plastic and driven by the duration of daylight. With aging, the capacity to behaviorally adapt to seasonal changes in photoperiod reduces.
View Article and Find Full Text PDFOur daily 24-h rhythm is synchronized to the external light-dark cycle resulting from the Earth's daily rotation. In the mammalian brain, the suprachiasmatic nucleus (SCN) serves as the master clock and receives light-mediated input via the retinohypothalamic tract. Abrupt changes in the timing of the light-dark cycle (e.
View Article and Find Full Text PDFAging is associated with changes in heart rate (HR), heart rate variability (HRV), and 24-h rhythms in HR. Longevity has been linked to lower resting HR, while a higher resting HR and a decreased HRV were linked to cardiovascular events and increased mortality risk. HR and HRV are often investigated during a short electrocardiogram (ECG) measurement at a hospital.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) signaling is tightly controlled in duration and intensity during embryonic development and in the adult to maintain tissue homeostasis. To visualize the TGF-β/SMAD3 signaling kinetics, we developed a dynamic TGF-β/SMAD3 transcriptional fluorescent reporter using multimerized SMAD3/4 binding elements driving the expression of a quickly folded and highly unstable GFP protein. We demonstrate the specificity and sensitivity of this reporter and its wide application to monitor dynamic TGF-β/SMAD3 transcriptional responses in both 2D and 3D systems in vitro, as well as in vivo, using live-cell and intravital imaging.
View Article and Find Full Text PDFCircadian rhythms of physiological and behavioral activities are regulated by a central clock. This clock is located in the bilaterally symmetrical suprachiasmatic nucleus (SCN) of mammals. Each nucleus contains a light-sensitive group of neurons, named the ventrolateral (VL) part, with the rest of the neurons being insensitive to light, named the dorsomedial (DM) group.
View Article and Find Full Text PDFA master clock located in the suprachiasmatic nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities in mammals. The SCN has two main functions in the regulation: an endogenous clock produces the endogenous rhythmic signal in body rhythms, and a calibrator synchronizes the body rhythms to the external light-dark cycle. These two functions have been determined to depend on either the dynamic behaviors of individual neurons or the whole SCN neuronal network.
View Article and Find Full Text PDFArtificial light, despite its widespread and valuable use, has been associated with deterioration of health and well-being, including altered circadian timing and sleep disturbances, particularly in nocturnal exposure. Recent findings from our lab reveal significant sleep and sleep electroencephalogram (EEG) changes owing to three months exposure to dim-light-at-night (DLAN). Aiming to further explore the detrimental effects of DLAN exposure, in the present study, we continuously recorded sleep EEG and the electromyogram for baseline 24-h and following 6-h sleep deprivation in a varied DLAN duration scheme.
View Article and Find Full Text PDFAging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions.
View Article and Find Full Text PDFRecent mathematical results for the noisy Kuramoto model on a 2-community network may explain some phenomena observed in the functioning of the suprachiasmatic nucleus (SCN). Specifically, these findings might explain the types of transitions to a state of the SCN in which 2 components are dissociated in phase, for example, in phase splitting. In contrast to previous studies, which required additional time-delayed coupling or large variation in the coupling strengths and other variations in the 2-community model to exhibit the phase-split state, this model requires only the 2-community structure of the SCN to be present.
View Article and Find Full Text PDFIn mammals, an endogenous clock located in the suprachiasmatic nucleus (SCN) of the brain regulates the circadian rhythms of physiological and behavioral activities. The SCN is composed of about 20,000 neurons that are autonomous oscillators with nonidentical intrinsic periods ranging from 22 h to 28 h. These neurons are coupled through neurotransmitters and synchronized to form a network, which produces a robust circadian rhythm of a uniform period.
View Article and Find Full Text PDFCircadian rhythms have been observed in behavioral and physiological activities of living things exposed to the natural 24 h light-darkness cycle. Interestingly, even under constant darkness, living organisms maintain a robust endogenous circadian rhythm suggesting the existence of an endogenous clock. In mammals, the endogenous clock is located in the suprachiasmatic nucleus (SCN) which is composed of about 20,000 neuronal oscillators.
View Article and Find Full Text PDFNeural systems are organized in a modular way, serving multiple functionalities. This multiplicity requires that both positive (e.g.
View Article and Find Full Text PDFIntroduction: Most organisms display circadian rhythms in physiology and behaviour. In mammals, these rhythms are orchestrated by the suprachiasmatic nucleus (SCN). Recently, several metabolites have emerged as important regulators of circadian timekeeping.
View Article and Find Full Text PDFThe circadian rhythms in mammals, that are regulated by the suprachiasmatic nucleus (SCN) of the brain, have been observed even in the absence of a light-dark cycle. The SCN is composed of about 10 000 autonomous neuronal oscillators, which are heterogenous in many oscillatory properties, including the heterogeneity in relaxation rates. Although the relaxation rate affects the entrainability of the SCN as a whole, not much is known about the reasons why the heterogeneity in relaxation rate exists.
View Article and Find Full Text PDFPhysical activity is beneficial for health. It has been shown to improve brain functioning and cognition, reduce severity of mood disorders, as well as facilitate healthy sleep and healthy aging. Sleep has been studied in healthy aged mice and absolute slow-wave-activity levels (SWA, electroencephalogram power between 0.
View Article and Find Full Text PDFOrganisms can be synchronized not only to the natural 24-h light-dark cycle but also to artificial non-24-h cycles. Interestingly, when the period of the cycle is far from 24 h, organisms may show complicated behavioral patterns. For example, exposed to a 22-h light-dark cycle, in behavioral activity of rats, a phenomenon called "dissociation" emerges, i.
View Article and Find Full Text PDFIn mammals, the main clock located in the suprachiasmatic nucleus (SCN) of the brain synchronizes the body rhythms to the environmental light-dark cycle. The SCN is composed of about 2×10^{4} neurons which can be classified into three oscillatory phenotypes: self-sustained oscillators, damped oscillators, and arrhythmic neurons. Exposed to an artificial external light-dark cycle with a period of 22h instead of 24h, two subgroups of the SCN can become desynchronized (dissociated).
View Article and Find Full Text PDFFor animals living in temperate latitudes, seasonal changes in day length are an important cue for adaptations of their physiology and behavior to the altered environmental conditions. The suprachiasmatic nucleus (SCN) is known as the central circadian clock in mammals, but may also play an important role in adaptations to different photoperiods. The SCN receives direct light input from the retina and is able to encode day-length by approximating the waveform of the electrical activity rhythm to the duration of daylight.
View Article and Find Full Text PDFIn mammals, the circadian rhythms of behavioral and physiological activities are regulated by an endogenous clock located in the suprachiasmatic nucleus (SCN). The SCN is composed of ~20,000 neurons, of which some are capable of self-sustained oscillations, while the others do not oscillate in a self-sustainable manner, but show arrhythmic patterns or damped oscillations. Thus far, the effects of these non-self-sustained oscillatory neurons are not fully explored.
View Article and Find Full Text PDF