Publications by authors named "Jos L Broers"

Background: Interpretation of missense variants can be especially difficult when the variant is also found in control populations. This is what we encountered for the c.992G>A (p.

View Article and Find Full Text PDF

In adherent cells, the relevance of a physical mechanotransduction pathway provided by the perinuclear actin cap stress fibers has recently emerged. Here, we investigate the impact of a functional actin cap on the cellular adaptive response to topographical cues and uniaxial cyclic strain. -deficient fibroblasts are used as a model system because they do not develop an intact actin cap, but predominantly form a basal layer of actin stress fibers underneath the nucleus.

View Article and Find Full Text PDF

The cell nucleus is structurally and functionally organized by lamins, intermediate filament proteins that form the nuclear lamina. Point mutations in genes that encode a specific subset of lamins, the A-type lamins, cause a spectrum of diseases termed laminopathies. Recent evidence points to a role for A-type lamins in intracellular redox homeostasis.

View Article and Find Full Text PDF

Not long after the discovery of lamin proteins, it became clear that not all lamin subtypes are ubiquitously expressed in cells and tissues. Especially, A-type lamins showed an inverse correlation with proliferation and were thus initially called statins. Here we compare the findings of both A- and B-type lamin expression in various normal tissues and their neoplastic counterparts.

View Article and Find Full Text PDF

Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions.

View Article and Find Full Text PDF

Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death.

View Article and Find Full Text PDF

Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes.

View Article and Find Full Text PDF

The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C.

View Article and Find Full Text PDF

Space travel exposes astronauts to a plethora of potentially detrimental conditions, such as cosmic radiation and microgravity. As both factors are hard to simulate on Earth, present knowledge remains limited. However, this knowledge is of vital importance, making space flight experiments a necessity for determining the biological effects and the underlying biochemical processes, especially when keeping future long-term interplanetary missions in mind.

View Article and Find Full Text PDF

A thorough understanding of fat cell biology is necessary to counter the epidemic of obesity. Although molecular pathways governing adipogenesis are well delineated, the structure of the nuclear lamina and nuclear-cytoskeleton junction in this process are not. The identification of the 'linker of nucleus and cytoskeleton' (LINC) complex made us consider a role for the nuclear lamina in adipose conversion.

View Article and Find Full Text PDF

Cardiomyocytes in vivo are continuously subjected to electrical signals that evoke contractions and instigate drastic changes in the cells' morphology and function. Studies on how electrical stimulation affects the cardiac transcriptome have remained limited to a small number of heart-specific genes. Furthermore, these studies have ignored the interplay between the electrical excitation and the subsequent contractions.

View Article and Find Full Text PDF

Background: The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect the physical integrity of nuclei and nucleo-cytoskeletal interactions, resulting in increased susceptibility to mechanical stress and altered gene expression.

View Article and Find Full Text PDF

Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.

View Article and Find Full Text PDF

New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress.

View Article and Find Full Text PDF

In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments.

View Article and Find Full Text PDF

Emerin is a type II inner nuclear membrane (INM) protein of unknown function. Emerin function is likely to be important because, when it is mutated, emerin promotes both skeletal muscle and heart defects. Here we show that one function of Emerin is to regulate the flux of beta-catenin, an important transcription coactivator, into the nucleus.

View Article and Find Full Text PDF

LMNA-associated progeroid syndromes have been reported with both recessive and dominant inheritance. We report a 2-year-old boy with an apparently typical Hutchinson-Gilford progeria syndrome (HGPS) due to compound heterozygous missense mutations (p.T528M and p.

View Article and Find Full Text PDF

We have applied the fluorescence loss of intensity after photobleaching (FLIP) technique to study the molecular dynamics and organization of nuclear lamin proteins in cell lines stably transfected with green fluorescent protein (GFP)-tagged A-type lamin cDNA. Normal lamin A and C proteins show abundant decoration of the inner layer of the nuclear membrane, the nuclear lamina, and a generally diffuse localization in the nuclear interior. Bleaching studies revealed that, while the GFP-tagged lamins in the lamina were virtually immobile, the intranuclear fraction of these molecules was partially mobile.

View Article and Find Full Text PDF

What can be concluded about lamin dynamics? a. While the nuclear lamina forms a tight network of proteins, individual lamina members, such as the lamin C proteins, are only partially bound to the lamina. b.

View Article and Find Full Text PDF

Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments that underlies the inner nuclear membrane. It associates with this membrane through interactions with specific integral nuclear membrane proteins, while within this flattened lamin lattice the nuclear pore complexes are embedded. Next to this peripheral network, the lamins can form intranuclear structures.

View Article and Find Full Text PDF

Laminopathies comprise a group of inherited diseases with variable clinical phenotypes, caused by mutations in the lamin A/C gene (LMNA). A prominent feature in several of these diseases is muscle wasting, as seen in Emery-Dreifuss muscle dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy. Although the mechanisms underlying this phenotype remain largely obscure, two major working hypotheses are currently being investigated, namely, defects in gene regulation and/or abnormalities in nuclear architecture causing cellular fragility.

View Article and Find Full Text PDF

Objective: High-shear perfusion of blood over collagen results in rapid platelet adhesion, aggregation, and procoagulant activity. We studied regulation of alpha2beta1 and alphaIIbbeta3 integrin activation during thrombus formation on collagen.

Methods And Results: Blockade of glycoprotein (GP) VI by 9O12 antibody or of P2Y purinergic receptors permitted platelet adhesion but reduced aggregate formation, fibrinogen binding, and activation of alpha2beta1 and alphaIIbbeta3, as detected with antibodies IAC-1 and PAC1 directed against activation-dependent epitopes of these integrins.

View Article and Find Full Text PDF

Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1.

View Article and Find Full Text PDF

Under conditions where apoptosis is prevented, peroxides disrupt the endothelial monolayer by inducing cytoskeletal rearrangements, cell retraction and formation of arrays of membrane blebs. In human umbilical vein endothelial cells (HUVEC), the H(2)O(2)-induced membrane blebbing was found to be a transient process executed by two parallel signaling mechanisms: (i) mobilization of cytosolic [Ca(2+)](i) through a pathway requiring oxidation of reduced glutathione (GSH), and (ii) activation of p38 mitogen-activated protein kinases (MAPK) independently of GSH oxidation and Ca(2+) mobilization. In the HUVEC, membrane blebbing was thus blocked by inhibition of GSH oxidation, Ca(2+) mobilization or p38 MAPK activation.

View Article and Find Full Text PDF

Background: Of the few vital DNA and RNA probes, the SYTO dyes are the most specific for nucleic acids. However, they show no spectral contrast upon DNA or RNA binding. We show that fluorescence lifetime imaging using two-photon excitation of SYTO13 allows differential and simultaneous imaging of DNA and RNA in living cells, as well as sequential and repetitive assessment of staining patterns.

View Article and Find Full Text PDF