Publications by authors named "Jorunn Eyfjord"

Obesity is associated with an increased risk of developing breast cancer (BC) and worse prognosis in BC patients, yet its impact on BC biology remains understudied in humans. This study investigates how the biology of untreated primary BC differs according to patients' body mass index (BMI) using data from >2,000 patients. We identify several genomic alterations that are differentially prevalent in overweight or obese patients compared to lean patients.

View Article and Find Full Text PDF

Our previous studies showed an association between monoallelic germline mutations and dysfunctional telomeres in epithelial mammary cell lines and increased risk of breast cancer diagnosis for women with germline mutation and short telomeres in blood cells. In the current study, we analyzed telomere dysfunction in lymphoid cell lines from five mutation carriers and three Fanconi Anemia D1 patients by fluorescence in situ hybridization (FISH). Metaphase chromosomes were harvested from ten lymphoid cell lines of different genotype origin and analyzed for telomere loss (TL), multitelomeric signals (MTS), interstitial telomere signals (ITS) and extra chromosomal telomere signals (ECTS).

View Article and Find Full Text PDF
Article Synopsis
  • Lynch syndrome is a hereditary cancer syndrome linked to mutations in mismatch repair genes, increasing the risk for various cancers, especially colorectal and endometrial cancer, and recently identified as a risk factor for early-onset aggressive prostate cancer.
  • The IMPACT study, an international research project, is evaluating the effectiveness of prostate-specific antigen (PSA) screening among men aged 40-69 with and without these genetic variants to determine the incidence and characteristics of prostate cancer.
  • Initial findings from the first round of PSA screenings indicate differences in prostate cancer detection and characteristics between men with pathogenic variants compared to age-matched controls who do not carry these variants.
View Article and Find Full Text PDF

Background: Breast Cancer 1 gene () is known to be inactivated in breast tumors by promoter methylation. Tumor cells in patients carrying a germline mutation in are sensitive to cytotoxic drugs that cause DNA double strand breaks. However, very little is known on whether patients with promoter methylated tumors are similarly sensitive to cytotoxic drugs.

View Article and Find Full Text PDF

Background: Mutations in BRCA2 cause a higher risk of early-onset aggressive prostate cancer (PrCa). The IMPACT study is evaluating targeted PrCa screening using prostate-specific-antigen (PSA) in men with germline BRCA1/2 mutations.

Objective: To report the utility of PSA screening, PrCa incidence, positive predictive value of PSA, biopsy, and tumour characteristics after 3 yr of screening, by BRCA status.

View Article and Find Full Text PDF

Estrogen receptor-positive breast cancer is subdivided into subtypes LuminalA and LuminalB, based on different expression patterns. MicroRNA-190b has been reported to be up-regulated in estrogen receptor-positive breast cancers. In this study we aimed to investigate the role of CpG promoter methylation in regulating miR-190b expression and its impact on clinical presentation and prognosis.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently.

View Article and Find Full Text PDF

In the Methods section of this Article, 'greater than' should have been 'less than' in the sentence 'Putative regions of clustered rearrangements were identified as having an average inter-rearrangement distance that was at least 10 times greater than the whole-genome average for the individual sample. '. The Article has not been corrected.

View Article and Find Full Text PDF

Background: Prostate-specific antigen (PSA) and PSA-velocity (PSAV) have been used to identify men at risk of prostate cancer (PrCa). The IMPACT study is evaluating PSA screening in men with a known genetic predisposition to PrCa due to BRCA1/2 mutations. This analysis evaluates the utility of PSA and PSAV for identifying PrCa and high-grade disease in this cohort.

View Article and Find Full Text PDF

Mismatch repair (MMR)-deficient cancers have been discovered to be highly responsive to immune therapies such as PD-1 checkpoint blockade, making their definition in patients, where they may be relatively rare, paramount for treatment decisions. In this study, we utilized patterns of mutagenesis known as mutational signatures, which are imprints of the mutagenic processes associated with MMR deficiency, to identify MMR-deficient breast tumors from a whole-genome sequencing dataset comprising a cohort of 640 patients. We identified 11 of 640 tumors as MMR deficient, but only 2 of 11 exhibited germline mutations in MMR genes or Lynch Syndrome.

View Article and Find Full Text PDF

Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer.

View Article and Find Full Text PDF

Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought.

View Article and Find Full Text PDF

Germline mutations increase risk of breast cancer and other malignancies. BRCA2 has been shown to play a role in telomere protection and maintenance. Telomere length (TL) has been studied as a modifying factor for various diseases, including breast cancer.

View Article and Find Full Text PDF

Background: The impact of an inherited BRCA2 mutation on the prognosis of women with breast cancer has not been well documented. We studied the effects of oestrogen receptor (ER) status, other prognostic factors and treatments on survival in a large cohort of BRCA2 mutation carriers.

Methods: We identified 285 breast cancer patients with a 999del5 BRCA2 mutation and matched them with 570 non-carrier patients.

View Article and Find Full Text PDF

Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization.

View Article and Find Full Text PDF

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) help to understand the effects of single nucleotide polymorphisms (SNPs) on breast cancer (BC) progression and survival. We performed multiple analyses on data from a previously conducted GWAS for the influence of individual SNPs, runs of homozygosity (ROHs) and inbreeding on BC survival. (I.

View Article and Find Full Text PDF

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved.

View Article and Find Full Text PDF

Overexpression of the Aurora A kinase has been shown to have prognostic value in breast cancer. Previously, we showed a significant association between AURKA gene amplification and BRCA2 mutation in breast cancer. The aim of this study was to assess the prognostic impact of Aurora A overexpression on breast cancer arising in BRCA2 mutation carriers.

View Article and Find Full Text PDF

In cancer, epigenetic states are deregulated and thought to be of significance in cancer development and progression. We explored DNA methylation-based signatures in association with breast cancer subtypes to assess their impact on clinical presentation and patient prognosis. DNA methylation was analyzed using Infinium 450K arrays in 40 tumors and 17 normal breast samples, together with DNA copy number changes and subtype-specific markers by tissue microarrays.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a plastic process in which fully differentiated epithelial cells are converted into poorly differentiated, migratory and invasive mesenchymal cells, and it has been related to the metastasis potential of tumors. This is a reversible process and cells can also eventually undergo mesenchymal-to-epithelial transition. The existence of a dynamic EMT process suggests the involvement of epigenetic shifts in the phenotype.

View Article and Find Full Text PDF

Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) may help to understand the effects of genetic polymorphisms on breast cancer (BC) progression and survival. However, they give only a focused view, which cannot capture the tremendous complexity of this disease. Therefore, we investigated data from a previously conducted GWAS on BC survival for enriched pathways by different enrichment analysis tools using the two main annotation databases Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).

View Article and Find Full Text PDF