Background: Compatibility between plant parasites and their hosts is genetically determined {Citation}both interacting organisms. For example, plants may carry resistance (R) genes or deploy chemical defences. Aphid saliva contains many proteins that are secreted into host tissues.
View Article and Find Full Text PDFSimilar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2024
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability.
View Article and Find Full Text PDFPathogens and pests secrete proteins (effectors) to interfere with plant immunity through modification of host target functions and disruption of immune signalling networks. The extent of convergence between pathogen and herbivorous insect virulence strategies is largely unexplored. We found that effectors from the oomycete pathogen, Phytophthora capsici, and the major aphid pest, Myzus persicae target the host immune regulator SIZ1, an E3 SUMO ligase.
View Article and Find Full Text PDFCrops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios.
View Article and Find Full Text PDFAphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear.Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms.
View Article and Find Full Text PDFAphids are phloem-feeding insects that cause economic losses to crops globally. Whilst aphid interactions with susceptible plants and partially resistant genotypes have been well characterized, the interactions between aphids and non-host species are not well understood. Unravelling these non-host interactions can identify the mechanisms which contribute to plant resistance.
View Article and Find Full Text PDFAphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While 'omics' approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley.
View Article and Find Full Text PDFMany herbivorous arthropods, including aphids, frequently associate with facultative endosymbiotic bacteria, which influence arthropod physiology and fitness. In aphids, endosymbionts can increase resistance against natural enemies, enhance aphid virulence and alter aphid fitness. Here, we used the electrical penetration graph technique to uncover physiological processes at the insect-plant interface affected by endosymbiont infection.
View Article and Find Full Text PDFAphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression.
View Article and Find Full Text PDFAphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid) and the cereal specialist Rhopalosiphum padi.
View Article and Find Full Text PDFBacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R.
View Article and Find Full Text PDFPlant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility.
View Article and Find Full Text PDFBackground: Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation.
View Article and Find Full Text PDFPathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e.
View Article and Find Full Text PDFAphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated.
View Article and Find Full Text PDFAphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation.
View Article and Find Full Text PDFNonhost resistance is a commonly occurring phenomenon wherein all accessions or cultivars of a plant species are resistant to all strains of a pathogen species and is likely the manifestation of multiple molecular mechanisms. Phytophthora capsici is a soil-borne oomycete that causes Phytophthora blight disease in many solanaceous and cucurbitaceous plants worldwide. Interest in P.
View Article and Find Full Text PDFBoth plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR or NLR) proteins to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans.
View Article and Find Full Text PDFAphids, like plant pathogens, are known to form close associations with their host. While probing and feeding, these insects deliver effectors inside the host, which are thought to be involved in suppression of host defenses and/or the release of nutrients. With increasing availability of aphid genome and transcriptome sequencing data, effectors can now be identified using bioinformatics- and proteomics-based approaches.
View Article and Find Full Text PDFAphids are phloem-feeding insects that, like other plant parasites, deliver effectors inside their host to manipulate host responses. The Myzus persicae (green peach aphid) candidate effectors Mp10 and Mp42 were previously found to reduce aphid fecundity upon intracellular transient overexpression in Nicotiana benthamiana. We performed functional analyses of these proteins to investigate whether they activate defenses through similar activities.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2013
In recent years, immense progress has been made toward understanding the functions of effectors from a range of plant pathogens, such as oomycetes, fungi, bacteria, and nematodes. Like plant pathogens, aphids form close associations with host plants, featuring signal exchange between the two organisms. While feeding and probing, aphids deliver effector proteins mixed with saliva directly into the host-stylet interface.
View Article and Find Full Text PDFInsect herbivores have highly diverse life cycles and feeding behaviors. They establish close interactions with their plant hosts and suppress plant defenses. Chewing herbivores evoke characteristic defense responses distinguishable from general mechanical damage.
View Article and Find Full Text PDFAphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva.
View Article and Find Full Text PDFFungal and oomycete plant pathogens translocate effector proteins into host cells to establish infection. However, virulence targets and modes of action of their effectors are unknown. Effector AVR3a from potato blight pathogen Phytophthora infestans is translocated into host cells and occurs in two forms: AVR3a(KI), which is detected by potato resistance protein R3a, strongly suppresses infestin 1 (INF1)-triggered cell death (ICD), whereas AVR3a(EM), which evades recognition by R3a, weakly suppresses host ICD.
View Article and Find Full Text PDF