Publications by authors named "Jorn Vogel"

Mobile manipulation aids aim at enabling people with motor impairments to physically interact with their environment. To facilitate the operation of such systems, a variety of components, such as suitable user interfaces and intuitive control of the system, play a crucial role. In this article, we validate our highly integrated assistive robot EDAN, operated by an interface based on bioelectrical signals, combined with shared control and a whole-body coordination of the entire system, through a case study involving people with motor impairments to accomplish real-world activities.

View Article and Find Full Text PDF

Humans exhibit a particular compliant behavior in interactions with their environment. Facilitated by fast physical reasoning, humans are able to rapidly alter their compliance, enhancing robustness and safety in active environments. Transferring these capabilities to robotics is of utmost importance particularly as major space agencies begin investigating the potential of cooperative robotic teams in space.

View Article and Find Full Text PDF

Different control strategies are available for human machine interfaces based on electromyography (EMG) to map voluntary muscle signals to control signals of a remote controlled device. Complex systems such as robots or multi-fingered hands require a natural commanding, which can be realized with proportional and simultaneous control schemes. Machine learning approaches and methods based on regression are often used to realize the desired functionality.

View Article and Find Full Text PDF

Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator.

View Article and Find Full Text PDF

Injuries, accidents, strokes, and other diseases can significantly degrade the capabilities to perform even the most simple activities in daily life. While assistive technology becomes more and more available to the people affected, there is still a big need for user interfaces suitable for people without functional hand movement. A large share of these cases involves neuromuscular diseases, which lead to severely reduced muscle function.

View Article and Find Full Text PDF

For paralyzed people activities of daily living like eating or drinking are impossible without external assistance. Robotic assistance systems can give these people a part of their independence back. Especially if the operation with a joystick is not possible anymore due to a missing hand function, people need innovative interfaces to control assistive robots in 3D.

View Article and Find Full Text PDF

A key factor for reliable object manipulation is the tactile information provided by the skin of our hands. As this sensory information is so essential in our daily life it should also be provided during teleoperation of robotic devices or in the control of myoelectric prostheses. It is well-known that feeding back the tactile information to the user can lead to a more natural and intuitive control of robotic devices.

View Article and Find Full Text PDF

Recently, progress has been made in the development of mechanical joints with variable intrinsic stiffness, opening up the search for application areas of such variable-stiffness joints. By varying the stiffness of its joints, the resonant frequency of a system can be tuned to perform cyclical tasks most energy-efficiently, making the variable-stiffness joint a candidate element for an advanced prosthetic device specifically designed for the cyclical task of drumming. A prerequisite for a successful variable-stiffness drumming prosthesis is the ability of human drummers to profitably employ different stiffness levels for playing different beats.

View Article and Find Full Text PDF

Heteroporphyrin and -phthalocyanine arrays represent an attractive class of light harvesters and charge-separation systems exhibiting an easy route of synthesis and high chemical stability. In the present work, we report the results of photophysical investigations of two novel non-sandwich-type porphyrin-phthalocyanine heterotriads, in which two meso-tetraphenylporphyrin rings (H2TPP or ZnTPP) are linked to the central silicon atom of a silicon(IV) phthalocyanine core. It was found that the photophysical properties of the triads (H2Tr and ZnTr) in N,N-dimethylformamide (DMF) and toluene are strongly affected by two different types of interaction between the porphyrin (P) and the phthalocyanine (Pc) parts, namely excitation energy transfer (EET) and photoinduced charge transfer.

View Article and Find Full Text PDF