Outbreaks of SARS-CoV-2 are threatening the health care systems of several countries around the world. The initial control of SARS-CoV-2 epidemics relied on non-pharmaceutical interventions, such as social distancing, teleworking, mouth masks and contact tracing. However, as pre-symptomatic transmission remains an important driver of the epidemic, contact tracing efforts struggle to fully control SARS-CoV-2 epidemics.
View Article and Find Full Text PDFBackground: Current outbreaks of COVID-19 are threatening the health care systems of several countries around the world. Control measures, based on isolation, contact tracing, and quarantine, can decrease and delay the burden of the ongoing epidemic. With respect to the ongoing COVID-19 epidemic, recent modeling work shows that these interventions may be inadequate to control local outbreaks, even when perfect isolation is assumed.
View Article and Find Full Text PDFIntroduction: Brown adipose tissue (BAT) is considered as a potential target for combating obesity in humans where active BAT metabolizes glucose and fatty acids as fuel resulting in heat production. Prospective studies in humans have been set up to further study the presence and metabolic activity of BAT mostly using Positron Emission Tomography (PET) imaging in cold-stimulated conditions with the radiolabeled glucose derivative [18F]FDG. However, radiotracers beyond [18F]FDG have been proposed to investigate BAT activity, targeting various aspects of BAT metabolism.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA)-DRB3 is a functional HLA class II gene, which has a limited allele diversity in the human population. Furthermore, the HLA-DRB3 gene is only present in a subset of individuals. Therefore, in organ transplantation, this HLA molecule is frequently mismatched between patient and graft donor and thus antibodies against this mismatched HLA molecule can develop.
View Article and Find Full Text PDFIndividual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in donor-specific HLA antibodies formation after kidney transplantation.
View Article and Find Full Text PDFBackground: Besides their prominent role in the elimination of infected or malignantly transformed cells, natural killer (NK) cells serve as modulators of adaptive immune responses. Enhancing bidirectional crosstalk between NK cells and dendritic cells (DC) is considered a promising tool to potentiate cancer vaccines. We investigated to what extent direct sensing of viral and bacterial motifs by NK cells contributes to the response of inflammatory DC against the same pathogenic stimulus.
View Article and Find Full Text PDFBackground: D antigens are not taken into account in the allocation of solid organs. Female transplant recipients with D antibodies as a consequence of D-mismatched kidney transplantation may develop hemolytic disease of the fetus and newborn in future pregnancies. We examined D antibody development in transplant recipients who received D-mismatched kidney transplantation in absence of D prophylaxis and in a setting of reduced immunosuppression.
View Article and Find Full Text PDFAutoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e.
View Article and Find Full Text PDFThrombotic microangiopathy (TMA) is a pattern of endothelial damage that can be found in association with diverse clinical conditions such as malignant hypertension. Although the pathophysiological mechanisms differ, accumulating evidence links complement dysregulation to various TMA syndromes and in particular the atypical hemolytic uremic syndrome. Here, we evaluated the role of complement in nine consecutive patients with biopsy-proven renal TMA attributed to severe hypertension.
View Article and Find Full Text PDFAccumulating evidence indicates that fractionated radiotherapy (RT) can result in distant non-irradiated (abscopal) tumour regression. Although preclinical studies indicate the importance of T cells in this infrequent phenomenon, these studies do not preclude that other immune mechanisms exhibit an addition role in the abscopal effect. We therefore addressed the question whether in addition to T cell mediated responses also humoral anti-tumour responses are modulated after fractionated RT and whether systemic dendritic cell (DC) stimulation can enhance tumour-specific antibody production.
View Article and Find Full Text PDFA coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8(+) effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses.
View Article and Find Full Text PDFBesides T helper (Th) cells, natural killer (NK) cells have also been described to participate in the shaping of dendritic cell (DC)-mediated adaptive immune responses. At present, it remains unclear to what extent the induction of these NK helper cell immune mechanisms is coupled with Th responses and whether both helper immune responses are induced by the same DC upon specific pathogen recognition receptor (PRR) stimulation. In this study, we demonstrate that maturation of DCs with a cocktail containing FMKp (membrane fragments of Klebsiella pneumoniae) mounts both Th cell and NK cell helper responses in a PRR-triggered dose-dependent manner as determined by the capacity of the helper cells to produce IFN-γ.
View Article and Find Full Text PDFBackground: Chorioamnionitis results from an infection of the fetal membranes and is associated with fetal adverse outcomes notably in the intestine. Using a translational ovine model, we showed that intra-amniotic exposure to inflammatory stimuli decreased the regulatory/effector T (Treg/Teff) cell balance in the gut, which was accompanied by intestinal inflammation and mucosal injury. We thus aimed to augment the Treg/Teff cell ratio in the fetal gut by prophylactic IL-2 treatment and evaluate whether it is sufficient to prevent chorioamnionitis-induced intestinal inflammation and mucosal injury.
View Article and Find Full Text PDFA crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC). In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells.
View Article and Find Full Text PDFIn cancer therapy, dendritic cell (DC) vaccination is still being explored. Clinical responses, however, are diverse and there is a lack of immunologic readout systems that correspond with clinical outcome. Only in the minority of patients, T-cell responses correlate with clinical outcome, indicating that other immune cells also gain anticancer activity.
View Article and Find Full Text PDFHypoxic-ischemic encephalopathy (HIE) is common in preterm infants, but currently no curative therapy is available. Cell-based therapy has a great potential in the treatment of hypoxic-ischemic preterm brain injury. Granulocyte-colony stimulating factor (G-CSF) is known to mobilize endogenous hematopoietic stem cells (HSC) and promotes proliferation of endogenous neural stem cells.
View Article and Find Full Text PDFHypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE.
View Article and Find Full Text PDFBackground: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system.
View Article and Find Full Text PDFAmong prostaglandins (PGs), PGE2 is abundantly expressed in various malignancies and is probably one of many factors promoting tumor growth by inhibiting tumor immune surveillance. In the current study, we report on a novel mechanism by which PGE2 inhibits in vitro natural killer-dendritic cell (NK-DC) crosstalk and thereby innate and adaptive immune responses via its effect on NK-DC crosstalk. The presence of PGE2 during IFN-γ/membrane fraction of Klebsiella pneumoniae DC maturation inhibits the production of chemokines (CCL5, CCL19, and CXCL10) and cytokines (IL-12 and IL-18), which is cAMP-dependent and imprinted during DC maturation.
View Article and Find Full Text PDFBackground: Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells.
View Article and Find Full Text PDFMucin-1 (MUC1) is a heavily O-glycosylated, transmembrane protein that is expressed on the apical surface of most secretory epithelia. In malignantly transformed epithelia, MUC1 has lost its apical distribution, is underglycosylated and is secreted into the circulation. Due to the underglycosylation of MUC1, cancer-specific MUC1-Tn/STn antigens, which are highly immunogenic, become exposed.
View Article and Find Full Text PDFBesides their role in destruction of altered self-cells, NK cells have been shown to potentiate T-cell responses by interacting with DC. To take advantage of NK-DC crosstalk in therapeutic DC-based vaccination for infectious diseases and cancer, it is essential to understand the biology of this crosstalk. We aimed to elucidate the in vitro mechanisms responsible for NK-cell recruitment and activation by DC during infection.
View Article and Find Full Text PDFInflammatory cytokines are well-recognized mediators of atherosclerosis. Depending on the pathological context, type I interferons (IFNs; IFNalpha and IFNbeta) exert either pro- or anti-inflammatory immune functions, but their exact role in atherogenesis has not been clarified. Here, we demonstrate that IFNbeta enhances macrophage-endothelial cell adhesion and promotes leukocyte attraction to atherosclerosis-prone sites in mice in a chemokine-dependent manner.
View Article and Find Full Text PDFBackground: Microbiota in the intestinal lumen provide an abundant source of potentially detrimental antigens, including lipopolysaccharide (LPS), a potent immunostimulatory product of Gram-negative bacteria recognized by the host via TLR-4 and MD-2. An aberrant immune response to LPS or other bacterial antigens has been linked to inflammatory bowel disease (IBD) and necrotizing enterocolitis (NEC).
Methods: We investigated which cells express MD-2 in the normal and inflamed ileum from neonates and adults by immunohistochemistry.