Background: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities.
View Article and Find Full Text PDFOver the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2022
The response of to ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to . Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots.
View Article and Find Full Text PDFWith the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not.
View Article and Find Full Text PDFIncreased global warming, caused by climate change and human activities, will seriously hinder plant development, such as increasing salt concentrations in soils, which will limit water availability for plants. To ensure optimal plant growth under such changing conditions, microorganisms that improve plant growth and health must be integrated into agricultural practices. In the present work, we examined the fate of Vicia faba microbiota structure and interaction network upon inoculation with plant-nodulating rhizobia (Rhizobium leguminosarum RhOF125) and non-nodulating strains (Paenibacillus mucilaginosus BLA7 and Ensifer meliloti RhOL1) in the presence (or absence) of saline stress.
View Article and Find Full Text PDF