Publications by authors named "Joris More-Chevalier"

Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed.

View Article and Find Full Text PDF

The microstructure and physical properties of reflective and black aluminum were compared for layers of different thicknesses deposited by magnetron sputtering on fused silica substrates. Reflective Al layers followed the Volmer-Weber growth mechanism classically observed for polycrystalline metal films. On the contrary, the extra nitrogen gas used to deposit the black aluminum layers modified the growth mechanism and changed the film morphologies.

View Article and Find Full Text PDF

The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results.

View Article and Find Full Text PDF

Eu-doped oxide thin films possess a great potential for several emerging applications in optics, optoelectronics, and sensors. The applications demand maximizing Eu photoluminescence response. Eu-doped ZnO, TiO and LuO thin films were deposited by Pulsed Laser Deposition (PLD).

View Article and Find Full Text PDF