Metabolomics-driven discoveries of biological samples remain hampered by the grand challenge of metabolite annotation and identification. Only few metabolites have an annotated spectrum in spectral libraries; hence, searching only for exact library matches generally returns a few hits. An attractive alternative is searching for so-called analogues as a starting point for structural annotations; analogues are library molecules which are not exact matches but display a high chemical similarity.
View Article and Find Full Text PDFMicrobial specialised metabolism is full of valuable natural products that are applied clinically, agriculturally, and industrially. The genes that encode their biosynthesis are often physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs consist of multiple groups of co-evolving genes called sub-clusters that are responsible for the biosynthesis of a specific chemical moiety in a natural product.
View Article and Find Full Text PDFMicrobial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrometry is an efficient technique to access metabolites from fractions and even environmental crude extracts. Nevertheless, metabolomics is limited in predicting structures or bioactivities for cryptic metabolites.
View Article and Find Full Text PDFBackground: It is well-known that the microbiome produces a myriad of specialised metabolites with diverse functions. To better characterise their structures and identify their producers in complex samples, integrative genome and metabolome mining is becoming increasingly popular. Metabologenomic co-occurrence-based correlation scoring methods facilitate the linking of metabolite mass fragmentation spectra (MS/MS) to their cognate biosynthetic gene clusters (BGCs) based on shared absence/presence patterns of metabolites and BGCs in paired omics datasets of multiple strains.
View Article and Find Full Text PDFBackground: Untargeted metabolomics approaches based on mass spectrometry obtain comprehensive profiles of complex biological samples. However, on average only 10% of the molecules can be annotated. This low annotation rate hampers biochemical interpretation and effective comparison of metabolomics studies.
View Article and Find Full Text PDFWith an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC.
View Article and Find Full Text PDFMicrobial specialized metabolites are key mediators in host-microbiome interactions. Most of the chemical space produced by the microbiome currently remains unexplored and uncharacterized. This situation calls for new and improved methods to exploit the growing publicly available genomic and metabolomic data sets and connect the outcomes to structural and functional knowledge inferred from transcriptomics and proteomics experiments.
View Article and Find Full Text PDF