The Gap Waveguide technology utilizes an Artificial Magnetic Conductor (AMC) to prevent the propagation of electromagnetic (EM) waves under certain conditions, resulting in various gap waveguide configurations. In this study, a novel combination of Gap Waveguide technology and the traditional coplanar waveguide (CPW) transmission line is introduced, analyzed, and demonstrated experimentally for the first time. This new line is referred to as GapCPW.
View Article and Find Full Text PDFA novel photonic-assisted 2-D Terahertz beam steering chip using only two tuning elements is presented. The chip is based on an array of three leaky wave antennas (LWAs) with a monolithically integrated beamforming network (BFN) on a 50 µm-thick indium phosphide substrate. The THz beam angle in elevation (E-plane) is controlled via optical frequency tuning using a tunable dual-wavelength laser.
View Article and Find Full Text PDFCancer Health Disparities
January 2022
The first International Conference on Cancer Health Disparities (ICCHD) was held on August 13-14, 2021, in Harlingen, TX, USA. This two-day ICCHD-2021 was organized by the University of Texas Rio Grande Valley, School of Medicine (UTRGV-SOM). About 200 national and international delegates from 10 countries attended this hybrid meeting in person and through online digital platforms.
View Article and Find Full Text PDFAt the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs.
View Article and Find Full Text PDF