Background/aim: Protein phosphatase and tensin homolog (PTEN) is a tumor suppressor protein with potential to be a new biotechnological drug for PTEN-deficient cancer treatment. This study aimed to develop PTEN-based chimeric proteins (CPP-PTEN-THP) for human epidermal growth factor receptor 2 (HER2)-positive breast cancer treatment, addressing current limitations like inadequate delivery, poor tumor penetration, and low selectivity, while assessing their potential HER2-specific anticancer effects.
Materials And Methods: pCEFL-EGFP vector was used for both TAT-PTEN-LTV and KLA-PTEN-LTV construction.
Background/aim: The epidermal growth factor receptor (EGFR) is over-expressed in several types of cancer, and monoclonal antibody therapy has been the strategy that has shown the best results. This study focused on the construction of a humanized single chain antibody (huscFv) directed against EGFR (HER1).
Materials And Methods: The CDR grafting method was used to incorporate murine complementarity determining regions (CDRs) of cetuximab into human sequences.
Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in the regulation of lipid and glucose homeostasis and inflammation. PPARγ expression level has been widely studied in multiple tissues; however, there are few reports of preceding attempts to produce full-length human PPARγ (hPPARγ) in cellular models, and generally, expression level is not known or measurable. We propose an alternative strategy to express recombinant hPPARγ1, using a transient transfection with an inducible Tet-On 3G system where target and reporter gene were cloned in the same open reading frame.
View Article and Find Full Text PDF