Bright near-infrared-emitting AgS nanocrystals (NCs) are used for in vivo temperature sensing relying on a reversible variation in intensity and photoluminescence lifetime within the physiological temperature range. Here, to gain insights into the luminescence and quenching mechanisms, we investigated the temperature-dependent luminescence of AgS NCs from 300 to 10 K. Interestingly, both emission and lifetime measurements reveal similar and strong thermal quenching from 200 to 300 K, indicating an intrinsic quenching process that limits the photoluminescence quantum yield at room temperature, even for perfectly passivated NCs.
View Article and Find Full Text PDFThe upconversion luminescence (UCL) lifetime has a wide range of applications, serving as a critical parameter for optimizing the performance of upconversion nanoparticles (UCNPs) in various fields. It is crucial to understand that this lifetime does not directly correlate with the decay time of the emission level; rather, it represents a compilation of all the physical phenomena taking place in the upconversion process. To delve deeper into this, we analyzed the dependence of the UCL lifetime on the excitation pulse width for β-NaYF:Yb,Er nanoparticles.
View Article and Find Full Text PDFLuminescence nanothermometry allows measuring temperature remotely and in a minimally invasive way by using the luminescence signal provided by nanosized materials. This technology has allowed, for example, the determination of intracellular temperature and monitoring of thermal processes in animal models. However, in the biomedical context, this sensing technology is crippled by the presence of bias (cross-sensitivity) that reduces the reliability of the thermal readout.
View Article and Find Full Text PDFLuminescence lifetime-based sensing is ideally suited to monitor biological systems due to its minimal invasiveness and remote working principle. Yet, its applicability is limited in conditions of low signal-to-noise ratio (SNR) induced by, e.g.
View Article and Find Full Text PDFRare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging.
View Article and Find Full Text PDFIn nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside.
View Article and Find Full Text PDFOptomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation.
View Article and Find Full Text PDFLanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level.
View Article and Find Full Text PDFWe present a simple methodology to design a pretargeted drug delivery system, based on clickable anti-programmed death ligand 1 (anti-PD-L1) antibodies (Abs) and clickable bovine serum albumin (BSA) nanoparticles (NPs). Pretargeted drug delivery is based on the decoupling of a targeting moiety and a drug-delivering vector which can then react in vivo after separate injections. This may be key to achieve active targeting of drug-delivering NPs toward cancerous tissue.
View Article and Find Full Text PDFAgS nanoparticles are the staple for high-resolution preclinical imaging and sensing owing to their photochemical stability, low toxicity, and photoluminescence (PL) in the second near-infrared biological window. Unfortunately, AgS nanoparticles exhibit a low PL efficiency attributed to their defective surface chemistry, which curbs their translation into the clinics. To address this shortcoming, we present a simple methodology that allows to improve the PL quantum yield from 2 to 10%, which is accompanied by a PL lifetime lengthening from 0.
View Article and Find Full Text PDFThe stunning optical properties of upconverting nanoparticles (UCNPs) have inspired promising biomedical technologies. Nevertheless, their transfer to aqueous media is often accompanied by intense luminescence quenching, partial dissolution by water, and even complete degradation by molecules such as phosphates. Currently, these are major issues hampering the translation of UCNPs to the clinic.
View Article and Find Full Text PDFTemperature of tissues and organs is one of the first parameters affected by physiological and pathological processes, such as metabolic activity, acute trauma, or infection-induced inflammation. Therefore, the onset and development of these processes can be detected by monitoring deviations from basal temperature. To accomplish this, minimally invasive, reliable, and accurate measurement of the absolute temperature of internal organs is required.
View Article and Find Full Text PDFThe objective of this work was to evaluate the potential use of a new polymer (PAMgA) in the development sustained release matrix tablets for the treatment of bowel inflammatory diseases. For this purpose, budesonide, a highly lipophilic compound, was used as model drug. Tablets with two reticulation grades of PAMgA (PAMgA 5 and 40) and with 9 mg of budesonide were developed and characterized.
View Article and Find Full Text PDFLuminescent nano-thermometry is a fast-developing technique with great potential for in vivo sensing, diagnosis, and therapy. Unfortunately, it presents serious limitations. The luminescence generated by nanothermometers, from which thermal readout is obtained, is strongly distorted by the attenuation induced by tissues.
View Article and Find Full Text PDFIn this work, we present a luminescence platform that can be used as point of care system for determining the presence and concentration of specific oligonucleotide sequences. This sensor exhibited a limit of detection as low as 50 fM by means of: (i) the use of single-stranded DNA (ssDNA) functionalized magnetic microparticles that captured and concentrated ssDNA-upconverting nanoparticles (ssDNA-UCNPs) on a solid support, when the target sequence (miR-21-5p DNA-analogue) was in the sample, and (ii) a photoligation reaction that covalently linked the ssDNA-UCNPs and the ssDNA magnetic microparticles, allowing stringent washes. The presented sensor showed a similar limit of detection when the assays were conducted in samples containing total miRNA extracted from human serum, demonstrating its suitability for detecting small specific oligonucleotide sequences under real-like conditions.
View Article and Find Full Text PDFFast and precise localization of ischemic tissues in the myocardium after an acute infarct is required by clinicians as the first step toward accurate and efficient treatment. Nowadays, diagnosis of a heart attack at early times is based on biochemical blood analysis (detection of cardiac enzymes) or by ultrasound-assisted imaging. Alternative approaches are investigated to overcome the limitations of these classical techniques (time-consuming procedures or low spatial resolution).
View Article and Find Full Text PDFOptical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (AgS superdots) derived from chemically synthesized AgS dots, on which a protective shell is grown by femtosecond laser irradiation.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNP) are increasingly used due to their advantages over conventional fluorophores, and their use as resonance energy transfer (RET) donors has permitted their application as biosensors when they are combined with appropriate RET acceptors such as graphene oxide (GO). However, there is a lack of knowledge about the design and influence that GO composition produces over the quenching of these nanoparticles that in turn will define their performance as sensors. In this work, we have analysed the total quenching efficiency, as well as the actual values corresponding to the RET process between UCNPs and GO sheets with three different chemical compositions.
View Article and Find Full Text PDFThe potential of a new poly(magnesium acrylate) hydrogel (PAMgA) as a pharmaceutical excipient for the elaboration of matrix tablets for the extended release of highly hydrophilic drugs was evaluated. The polymer was synthetized with two different crosslinking degrees that were characterized by FTIR and DSC. Their acute oral toxicity was determined in a mouse model, showing no toxicity at doses up to 10 g/kg.
View Article and Find Full Text PDFAgS semiconductor nanoparticles (NPs) are near-infrared luminescent probes with outstanding properties (good biocompatibility, optimum spectral operation range, and easy biofunctionalization) that make them ideal probes for in vivo imaging. AgS NPs have, indeed, made possible amazing challenges including in vivo brain imaging and advanced diagnosis of the cardiovascular system. Despite the continuous redesign of synthesis routes, the emission quantum yield (QY) of AgS NPs is typically below 0.
View Article and Find Full Text PDFCorrection for 'Perspectives for AgS NIR-II nanoparticles in biomedicine: from imaging to multifunctionality' by Yingli Shen, et al., Nanoscale, 2019, DOI: 10.1039/c9nr05733a.
View Article and Find Full Text PDFResearch on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes.
View Article and Find Full Text PDFMetallic nanostructures have the potential to modify the anti-Stokes emission of upconverting nanoparticles (UCNPs) by coupling their plasmon resonance with either the excitation or the emission wavelength of the UCNPs. In this regard gold nanoparticles (AuNPs) have often been used in sensors for UCNP luminescence quenching or enhancement, although systematic studies are still needed in order to design optimal UCNP-AuNP based biosensors. Amidst mixed experimental evidence of quenching or enhancement, two key factors arise: the nanoparticle distance and nanoparticle size.
View Article and Find Full Text PDFFlorfenicol (FLO) is a broad-spectrum fluorinated antibiotic used for the treatment of bacterial diseases such as bovine respiratory disease (BRD) in cattle. FLO is a poorly soluble drug in aqueous solution, and its encapsulation in various nanovehicles has been reported to be less than 30%. In this context, the use of bovine serum albumin (BSA) as a nanocarrier for FLO is an interesting approach.
View Article and Find Full Text PDF