Newly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.
View Article and Find Full Text PDFCurrent measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity.
View Article and Find Full Text PDFIn order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells.
View Article and Find Full Text PDFUnlabelled: Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain.
View Article and Find Full Text PDFVaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies.
View Article and Find Full Text PDFDengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC).
View Article and Find Full Text PDFHepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77.
View Article and Find Full Text PDFMeasles remains a leading cause of death worldwide among children because it suppresses immune function. The measles virus (MV) P gene encodes three proteins (P, V, and C) that interfere with innate immunity, controlling STAT1, STAT2, mda5, and perhaps other key regulators of immune function. We identified here three residues in the shared domain of the P and V proteins-tyrosine 110, valine 112, and histidine 115-that function to retain STAT1 in the cytoplasm and inhibit interferon transcription.
View Article and Find Full Text PDFThe signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain.
View Article and Find Full Text PDFThe widely used hepatitis B virus (HBV) vaccine is based on three doses of hepatitis B surface antigen (HBsAg) protein. We previously showed that vectored measles viruses (MV) expressing HBsAg retain measles vaccine function in monkeys but do not induce a protective anti-HBs response in all animals. We show here that a single dose of HBsAg protein following a three-dose vaccination regimen with an optimized HBsAg-expressing MV elicits protective anti-HBs responses in all four vaccinated Rhesus monkeys.
View Article and Find Full Text PDFThe molecules involved in dengue virus entry into human cells are currently unknown. We have previously shown that two surface heat shock proteins (Hsps), Hsp90 and Hsp70 are part of a receptor complex in monocytic cells. In the present report, the effect of heat shock (HS) on dengue virus infection is analyzed.
View Article and Find Full Text PDFDengue virus (DENV) is transmitted to humans by mosquitoes of the genus Aedes. Although several molecules have been described as part of DENV receptor complex in mosquito cells, none of them have been identified. Our group characterized two glycoproteins (40 and 45 kD) as part of the DENV receptor complex in C6/36 cells.
View Article and Find Full Text PDFHepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated.
View Article and Find Full Text PDFDengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments.
View Article and Find Full Text PDFNucleotide sequences coding for the full-length envelope (E) glycoprotein gene of dengue virus type 4 was amplified using an RT-PCR method from infected C6/36 cells and cloned into pPROEx-Hta expression vector. The expression of the recombinant E protein in Escherichia coli was confirmed by Western blot using a polyclonal anti-dengue polyclonal antibody. The His-tagged fusion protein was obtained from the bacterial cellular extracts in almost pure form by immobilized metal affinity chromatography and the recombinant protein retained its ability to bind to 40 and 45 kDa proteins, previously described as putative receptors for dengue virus in C6/36 cells.
View Article and Find Full Text PDFThe synthesis of plus and minus RNA strands of several RNA viruses requires as a first step the interaction of some viral regulatory sequences with cellular and viral proteins. The dengue 4 virus genome, a single-stranded, positive-polarity RNA, is flanked by two untranslated regions (UTR) located in the 5' and 3' ends. The 3'UTR in the minus-strand RNA [3'UTR (-)] has been thought to function as a promoter for the synthesis of plus-strand RNA.
View Article and Find Full Text PDF