Publications by authors named "Jorge Perez Pena"

Photosynthesis acclimation to high temperature differs among and within species. Grapevine intra-specific variation in photosynthetic acclimation to elevated temperature has been scarcely assessed. Our objectives were to (i) evaluate the mechanisms underlying long-term acclimation of photosynthesis to elevated temperature in grapevine, and (ii) determine whether these responses are similar among two varieties.

View Article and Find Full Text PDF

Light is a main environmental factor that determines leaf microclimate within the vine, as well as its photosynthesis and carbohydrate metabolism. This study aimed to examine the relationships between photosynthesis, carbohydrate metabolism, and the expression of related genes in leaves of grapevine grown under different radiation regimes. During the 2014/2015 growing season, an experiment was conducted on a Malbec vineyard (Vitis vinifera L.

View Article and Find Full Text PDF

Background And Aims: Scaling from single-leaf to whole-canopy photosynthesis faces several complexities related to variations in light interception and leaf properties. To evaluate the impact of canopy strucuture on gas exchange, we developed a functional-structural plant model to upscale leaf processes to the whole canopy based on leaf N content. The model integrates different models that calculate intercepted radiation, leaf traits and gas exchange for each leaf in the canopy.

View Article and Find Full Text PDF

Hydraulic conductance and water transport in plants may be affected by environmental factors, which in turn regulate leaf gas exchange, plant growth and yield. In this study, we assessed the combined effects of radiation and water regimes on leaf stomatal conductance (gs), petiole specific hydraulic conductivity (Kpetiole) and anatomy (vessel number and size); and leaf aquaporin gene expression of field-grown grapevines at the Agroscope Research Station (Leytron, Switzerland). Chasselas vines were subjected to two radiation (sun and shade) levels combined with two water (irrigated and water-stressed) regimes.

View Article and Find Full Text PDF

Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages.

View Article and Find Full Text PDF