Publications by authors named "Jorge Perez Juste"

Article Synopsis
  • - The study introduces a method for creating silver nanoplates (AgNPTs) with customizable sizes and thicknesses, utilizing ethylenediaminetetraacetic acid (EDTA) and small silver seeds to control their optical properties.
  • - By adjusting the pH between 8-10.5 during the synthesis process, researchers can influence the growth of the nanoplates, producing different optical responses and extending plasmon resonance up to around 2000 nm.
  • - The addition of Adenosine 5' monophosphate (AMP) enhances nanoplate stability and allows for independent thickness adjustments while EDTA aids in the complexation of silver, leading to precise control over nanoplate characteristics through theoretical simulations
View Article and Find Full Text PDF

Noble metal nanoparticles, particularly gold and silver nanoparticles, have garnered significant attention due to their ability to manipulate light at the nanoscale through their localized surface plasmon resonance (LSPR). While their LSPRs below 1100 nm were extensively exploited in a wide range of applications, their potential in the near-infrared (NIR) region, crucial for optical communication and sensing, remains relatively underexplored. One primary reason is likely the limited strategies available to obtain highly stable plasmonic nanoparticles with tailored optical properties in the NIR region.

View Article and Find Full Text PDF

Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions.

View Article and Find Full Text PDF

Plasmonic photocatalysis demonstrates great potential for efficiently harnessing light energy. However, the underlying mechanisms remain enigmatic due to the transient nature of the reaction processes. Typically, plasmonic photocatalysis relies on the excitation of surface plasmon resonance (SPR) in plasmonic materials, such as metal nanoparticles, leading to the generation of high-energy or "hot electrons", albeit accompanied by photothermal heating or Joule effect.

View Article and Find Full Text PDF

Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents.

View Article and Find Full Text PDF

These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers.

View Article and Find Full Text PDF

Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert.

View Article and Find Full Text PDF

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index.

View Article and Find Full Text PDF

In this study, we propose a novel approach for the silica coating of silver nanoparticles based on surface modification with adenosine monophosphate (AMP). Upon AMP stabilization, the nanoparticles can be transferred into 2-propanol, promoting the growth of silica on the particle surfaces through the standard Stöber process. The obtained silica shells are uniform and homogeneous, and the method allows a high degree of control over shell thickness while minimizing the presence of uncoated NPs or the negligible presence of core-free silica NPs.

View Article and Find Full Text PDF

Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co O @L-His and Co O @D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated.

View Article and Find Full Text PDF

Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating hydrophobic gold nanoparticles (NPs) with intrinsic chirality, addressing the limitations of existing methods that mostly work in water.
  • Using liquid crystal-like ligands, the researchers successfully transfer water-soluble NPs to a hydrophobic phase, preserving their chiral properties, which is verified by strong circular dichroism signals.
  • This innovative method can be applied to various types of NPs and has the potential to enhance applications in chiral catalysis and biosensing through the development of new nanocomposites with soft matter.
View Article and Find Full Text PDF

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent.

View Article and Find Full Text PDF

A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides.

View Article and Find Full Text PDF

We report here fast A-site cation cross-exchange between APbX perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition.

View Article and Find Full Text PDF

In this manuscript, polydimethylsiloxane (PDMS) sponges supporting metal nanoparticles (gold and palladium) were developed and their catalytic properties were studied through a model reaction such as the hydrogenation of p-nitrophenol. Different synthetic conditions for gold and palladium were studied to obtain the best catalyst in terms of nanoparticle loading. The as-prepared catalysts were characterized by different techniques such as scanning electron microscopy (SEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

View Article and Find Full Text PDF

The agri-food industry has historically determined the socioeconomic characteristics of Galicia and Northern Portugal, and it was recently identified as an area for collaboration in the Euroregion. In particular, there is a need for action to help to ensure the provision of safe and healthy foods by taking advantage of key enabling technologies. The goals of the FOODSENS project are aligned with this major objective, specifically with the development of biosensors able to monitor hazards relevant to the safety of food produced in the Euroregion.

View Article and Find Full Text PDF

This paper describes the synthesis of highly branched gold nanoparticles (AuNPs) through a facile seeded growth approach using poly(allylamine hydrochloride) (PAH) as shape inducing agent. The obtained branched AuNPs present highly tunable optical properties in the Vis-NIR region from ca. 560 nm to 1260 nm.

View Article and Find Full Text PDF

It is well known that microbial populations and their interactions are largely influenced by their secreted metabolites. Noninvasive and spatiotemporal monitoring and imaging of such extracellular metabolic byproducts can be correlated with biological phenotypes of interest and provide new insights into the structure and development of microbial communities. Herein, we report a surface-enhanced Raman scattering (SERS) hybrid substrate consisting of plasmonic Au@Ag@mSiO nanorattles for optophysiological monitoring of extracellular metabolism in microbial populations.

View Article and Find Full Text PDF

Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls.

View Article and Find Full Text PDF

Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities.

View Article and Find Full Text PDF

This work focuses on the systematic investigation of the shape, size, and composition-controlled synthesis of perovskite nanocrystals (NCs) under inert gas-free conditions and using pre-synthesized precursor stock solutions. In the case of CsPbBr NCs, we find that the lowering of reaction temperature from ∼175 to 100 °C initially leads to a change of morphology from bulk-like 3D nanocubes to 0D nanocubes with 3D-quantum confinement, while at temperatures below 100 °C the reaction yields 2D nanoplatelets (NPls) with 1D-quantum confinement. However, to our surprise, at higher temperatures (∼215 °C), the reaction yields CsPbBr hexapod NCs, which have been rarely reported.

View Article and Find Full Text PDF

From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena.

View Article and Find Full Text PDF